SafeNet Authentication
Client (Linux)

Developer’s Guide
Version 8.0 Revision A

SafelNet.

Copyright © 2010, SafeNet, Inc. Al rights reserved.

All attempts have been made to make the information in this document complete and accurate.
SafeNet, Inc. is not responsible for any direct or indirect damages or loss of business resulting
from inaccuracies or omissions. The specifications contained in this document are subject to
change without notice.

SafeNet and SafeNet Authentication Client are trademarks of SafeNet, Inc. All other
trademarks, brands, and product names used in this Manual are trademarks of their respective
owners.

SafeNet Hardware and/or Software products described in this document may be protected by
one or more U.S. Patents, foreign patents, or pending applications.

For details of FCC Compliance, CE Compliance and UL Notification, please contact SafeNet
Support.

Support

We work closely with our reseller partners to offer the best worldwide
technical support services. Your reseller is the first line of support
when you have questions about products and services. However, if
you require additional assistance you can contact us directly at:

Telephone

You can call our help-desk 24 hours a day, seven days a week:
USA: 1-800-545-6608
International: +1-410-931-7520

Email

You can send a question to the technical support team at the following
email address:

support@safenet-inc.com

Website

You can submit a question through the SafeNet Support portal:

http://c3.safenet-inc.com/secure.asp

Additional Documentation

We recommend reading the following SafeNet Token publication:

m SafeNet Authentication Client (Linux) 8.0 Administrator’s Guide
m SafeNet Authentication Client (Linux) 8.0 User’s Guide

m SafeNet Authentication Client (Linux) 8.0 ReadMe

1.

SafelNet.

Table of Contents

L0 1
SafeNet Authentication Client 8.0ccovvririnrire s 2
Choosing the COrrect APL.........c..ceeeeeeee e 2
PRCSHETT ..o 3
SAPL .. 3
ODSOIELE APIS......e ettt 3
Developing in Non-C/C++ ENVIFONMENES ..o, 4
A Note 0N Cryptography.......cccceeieicirieiesieeissessisse s, 5
Additional Cryptography Information SOUICES ..., 5
Password Management............cviriereeeee e 6
Multi-Language SUPPOI...........coveierrieeicirieiesse et 6
Password Policy Managementoirimrieeeeeeessessesesseesesssssesseeens 6
Supported TOKEN MOGEIS..........covrurrieirireeeireee st 7
PKCS#11 and Configuration............c.cuesmememmmsmessmsssessesssessssssessssssssaes 9
PKCS#11 Implementation for SafeNet Authentication Client 8.0...........cccccoun... 10
USING IDETPKCSTT ...ttt 10
SUPPOIted ODJECE tYPES......vvvceiceiee e "
SUPPOIrted MEChANISMS.........cureeereceeeeereie ettt esesnenes 12
PKCSHIT FUNCHONS ...ttt 13
CINIHANZE ... 13
C_FINANZE. ... 14
(O 110 (o T 14
C_GELSIOILISE ..o 15
C_GetSIOINTO ... 15
C_GEITOKENINTO ...ttt 16
C_WatFOrSIOEVENL........ooiiiic s 18
C_INITTOKEN .ottt 18
C_SEPIN ..o s 18

Vi

C_COPYODJECLooereiecieeseiceeictsei sttt 19
C_GEtODJECISIZE ... e 19
C_GetAHMDULEVAIUE ...t 19
C_GenerateEYPaIrcoveueerieireieieseie e 20
C_DEIIVEKEY......covveictie ittt 20
C_SEARANAOM ..ot 20
C_CreateODJECE ... e 20
Major Backward Compatibility Issues of PKCSHI ..o 21
Token-Specific PKCS#11 EXtenSions..........ounmnmsmmssmesmmssessesssssssssens 23
GENEIAl OVEIVIEWcoveieecte ettt 24
Understanding Token-Specific PKCS#11 EXtensions...........ccccccvevvicvernieinennes 24
Encoding of Text Attributes, Fields and Parameters..........cccocovvvenenenireneenes 25
SafeNet Authentication Clientcccoveviieeicecce e 26
SIOYTOKEN TOCTL ...ttt 27
Extensions Related to Operations with Slots and Tokens..........c.cccooeverernineenes 27
Special Token Capabilities............euvrerreririeireieereeesseesseseeessesse s 31
Vendor-Specific INfOrMation.............c.ccviecieicscseee e 33
Vendor-Specific OTP Key AHNDULES ..o 33
Secondary authentiCation.............oerre s 33
TOKen iNItIAlIZALION. ..o 35
Controlling Initialization Parameters...........ccoovrniesseeseeeeeeeeenns 38
PIN INIHAIZAtON ... 42
Behavior of Standard C_lInitToken and C_InitPIN Functions.............cccccccvuunee. 42
Backward Compatibility ISSUES.............ccueuereeeieieeieceeeeee e 43
Special Authentication FEatUres...........cccovveiriereniesreseeesse s 44
MiISCEllANEOUS FEALUIES..........coceerrecieiirce e 46
REFEIENCE.......e et 47
Common INFOrMALIONc.oviveiicc e 47
CONSIANES. ... s 47
DAt TYPES....ouceeieiereeseieseeie e 49
O] o)1= TP 50
Challenge-Response Unlocking Capability Feature Object...........cccccvvcvvivevnenee. 57
Private Data Caching Feature ODJECE ..o, 58
Secondary Authentication Policy Feature Objectccvevieviniereniecin, 59
FUNCHONS ..ottt 60
MECNANISMS........cooeiceeeirei ettt 70

PrOPEITIES. ...t 71

Token Model SPECIfICatiONS...........covrurrieirireiririnseesse e 74
SAPL....oee e —————————— 75
INEFOAUCHION ...t 76
Common Description Of SAP ... 76
OTP FUNCHONANILY.......coocvuiriciieieicsee et 77
Miscellaneous FUNCHONAIILY ..o 78
DAt TYPES.....ceuerececeeeeieesei ettt 79
CKUINIT_CALLBACK ...t sssnes 79
CK_UNBLOCK_CALLBACKoooeeeerirrireireieieieissiessessessesssssessessessessessessessens 80
CK_UNBLOCK_CALLBACK_EX ..o 80
SAPI_PIN_POLICY_INFO ...t 81
CK_SAPI_OTP_MECHANISM_INFOcoviririerrieieieieiseesesesseseesessenens 81
EITOT COUES ...ttt 82
SAPIODJECES ...ttt 85
SIOt ODJECL......eeeeieiierie s 85
TOKEN ODJECE ..o 86
OTP ODJECL. ...t 94
FUNCHONS ..ottt 96
CommON FUNCHONANILYcovveerieiiiieee s 96
Slot/Token FUNCHONAILYcccvveveieeeiicieee e e 97
OTP FUNCHONAIILY........c..cvreeeereieececieeeee e 105
Major Backward Compatibility ISSUES Of SAPI..........ccvvvirieieeeeeeeeeene, 12
SAMPIES ... s 113
SAMPIE OVEIVIEW ...ttt 114
Compiling the SAMPIESc..cvvieeririerre e 114
PKCSHIT SAMPIES ..ottt 115
CACEM ...t 115
ClEAITOKEN ...t 116
INFO TESE ..o 116
INIETOKEIN ... 17
PaSSWOIA PONICY ..ot 18
PKCS#11 Token-Specific Extensions Samplesccoevvevcnieivessescrsieeenns 19
IMIALING ..ottt 119
UNIOCKTOKEN.....coveiic s 19
SAPISAMPIES ..ottt 120

INIOTP .o 120

viii |

INIETOKEIN ...ttt ettt et et e et et et e et eeeste et eteeeeeeeeeneeeeseeeeseeneeeens 121
TOKENINTO <.ttt ettt ettt ee et e e et eesen et eneenenaeseens 121

SafelNet.

Chapter 1

Overview

This chapter provides an overview of SafeNet Authentication Client
8.0

m SafeNet Authentication Client 8.0
Choosing the Correct API

Obsolete APls

Developing in Non-C/C++ Environments
A Note on Cryptography

Password Management

Supported Token Models

2|

SafeNet Authentication Client 8.0

SafeNet Authentication Client 8.0 installs all the necessary files and
token drivers to support token integration with various security
applications. It enables operating systems and third party applications
to access the token. Installing the SafeNet Authentication Client
allows communication with all available token devices and forms the
basis for SafeNet's various management solutions, such as Token
Management System (TMS); a complete framework for managing all
aspects of token assignment, deployment and personalization within
an organization.

SafeNet's token based PKI Solutions enable the implementation of
strong two-factor authentication using standard certificates. Generic
integration with PKCS#11 security interfaces enables interoperability
with a variety of security application such as Web Access, VPN
Access, Network Logon, PC Protection and Secure eMail. PKI keys
and certificates can be securely created, stored and used from within
the token.

When used with eToken PRO/Smartcard or eToken NG-OTP the PKI
Private keys can be generated and operated on board the secure chip.

SafeNet Authentication Client supports the various types of token
device in both form factors. This means that only a single PKI
installation is required to enable operations of either a traditional
Smartcard or a USB token (PRO/ NG-OTP), resulting in easy
deployment and cost effective installation in use of token products
and solutions.

SafeNet Authentication Client can be deployed and updated using
any standard software distribution system such as TMS. In addition,
the TMS supports software distribution using the Microsoft GPO
system.

Choosing the Correct API

You have the following options when deciding which methodology to
use when programming applications that utilize the token:

m PKCS#11

m SAPI

Obsolete APIs 3

PKCS#11

SAPI

PKCS#11 is a Public-Key Cryptography Standard (PKCS) for public-
key cryptography, developed by RSA Laboratories and includes both
algorithm-specific and algorithm-independent implementation
standards. It is an industry standard that defines a technology-
independent programming interface for cryptographic devices such
as smartcards and PCMCIA cards.

This standard specifies an application program interface (API), called
Cryptoki (Cryptographic Token Interface), to devices, either physical
or virtual, which hold cryptographic information (keys and other
data) and perform cryptographic functions.

This APl is used across many platforms and is powerful enough for
most security-related applications. SafeNet uses PKCS#11 as the main
API for token programming.

All vendor-specific token functionality is available either via PKCS#11
API or via proprietary extensions developed to be usable in PKCS#11
applications.

SAPI (Supplementary API) was first introduced in eToken RTE 3.60 to
overcome the requirement for applications to use obsolete low-level
APIs. It provided access to the token-specific capabilities not covered
by the PKCS#11 standard. This functionality is available now via
PKCS#11 APL

SAPI is supported in SafeNet Authentication Client (with restrictions
described later in this document) and may be used by applications.
However the new features are not supported via SAPI You are
encouraged to use PKCS#11 for new development (unless the
application is required to run on eToken RTE 3.65 as well).

Obsolete APIs

m eToken SDK 3.51 described several low-level APIs, such as:
¢ eToken API that provided low-level access to a token

¢ A partly documented APDU-level APDU that allowed
sending a separate APDU to the token

¢ eTOCX COM-API for low-level token functionality.

m All low-level APIs are considered obsolete and are not supported
in PKI Client 5.0.

m The Certificate Store is not supported in PKI Client 5.0. The

functionality is now available through the PKI Client taskbar
menu (PKI Monitor).

Developing in Non-C/C++ Environments

Using Sun's PKCS#11 Provider in Java

The Java platform defines a set of programming interfaces for
performing cryptographic operations. These interfaces are collectively
known as Java Cryptography Architecture (JCA) and Java
Cryptography Extension (JCE).

For more information, refer to:
http://java.sun.com/j2se/1.5.0/docs/guide/security/index.html

The Sun PKCS#11 provider acts as a bridge between JCA and JCE
interfaces and the native PKCS#11 provider. However, working in this
manner does not provide full access to all the functionality of
PKCS#11. For instance, it is only possible to work with keys and
certificates.

This functionality is supported since Java 2 Platform Standard Edition
5 (J2SE 5.0).

Writing Wrapper Objects

The alternate solution (for either programming environment) is to
write a wrapper object that answers the particular needs of the
application. Depending on these needs, the wrapper object may be a
NET assembly object, an ActiveX object or something else.

A Note on Cryptography | 5

A Note on Cryptography

Application developers use token for one or two main purposes:

m Adding strong cryptographic capabilities to the application
®m As asecure data repository

Using token for secure data storage is simple and obvious, but
cryptography is a complicated subject and requires a few comments.

Cryptography itself is not too complicated to understand, but it can be
very complicated to use in the correct manner. There are a number of
good references to learn about cryptography (See Additional
Cryptography Information Sources on page 5) but the first rule is do not
reinvent the wheel. In most cases it will not work correctly.

There are many good cryptographic algorithms available, but they
need to be used properly. Many of the real world security attacks are
the result of improper use of cryptography rather than the use of weak
algorithms. Each task requires the correct algorithm to be used.

Wherever possible, try to use standard solutions. When a proprietary
solution is required, obtain the assistance of a cryptography specialist
before developing the application and ensure that the process being
followed is appropriate for the purpose.

Additional Cryptography Information Sources

Books:

There are a number of sources for information on cryptography. We
recommend reading some or all of the following;:

Applied Cryptography by Bruce Schneier

Applied Cryptography: Protocols, Algorithms, and Source Code in C,
Second Edition by Bruce Scneier

Practical Cryptography by Niels Ferguson, Bruce Schneier

6 |

Web Sources:

http://theory.Ics.mit.edu/~rivest/crypto-security.html

http://lwww.cryptovb.com/links/links.html
Password Management

Multi-Language Support

Most applications, irrespective of the selected AP, need to transfer the
password to the token. Using non-ASCII characters in the password
may result in serious compatibility problems with other applications.
SafeNet Authentication Client UI converts the password to the UTF-8
encoding (as required by later versions of PKCS#11).

In order to avoid compatibility problems we recommend that the
password includes only printable ASCII characters.

Password Policy Management

The PKI Client (since version 4.0) enforces password policy setting:

m The password must be changed (for example, due to expiration),
and the application will not work with the token until the

password is changed. The exact behavior depends on the API in
use:

¢ PKCS#11 application will behave according to the v2.20 spec,
which means:

¢ C_Login with CKU_USER will succeed.

¢ The subsequent call to C_GetTokenInfo returns the
CKF_USER_PIN TO_BE_CHANGED flag set.

¢ Any subsequent call requiring the user to be logged fails
with CKR_PIN_EXPIRED until the user changes the
password.

Supported Token Models 7

¢ SAPI_Login not involving the PKI Client Ul fails with
CKR_SAPI_PIN EXPIRATION.

¢ The logon operation (in any API) involving PKI Client UI will
enforce the user to change the password.

m Password change may fail if the new password does not fit the
defined password policy.

Supported Token Models

SafeNet Authentication Client supports multiple token types:

m eToken PRO

m eToken PRO Anywhere

m eToken NG-FLASH

m eToken NG-FLASH Anywhere
m eToken NG-OTP

m SafeNet eToken Rescue

m SafeNet eToken Virtual

m eToken PRO Smartcard

In addition SafeNet Authentication Client may be used to perform
cryptographic operations in the absence of any token.

SafelNet.

Chapter 2

PKCS#11 and Configuration

This section contains information about the SafeNet Authentication
Client implementation of the PKCS#11 standard.

For full specifications on the PKCS#11 standard, refer to:

http://www.rsasecurity.com/rsalabs/node.asp?id=2133.

m PKCS#11 Implementation for SafeNet Authentication Client 8.0
m Supported Object types

m Supported Mechanisms

m PKCS#11 Functions

m Major Backward Compatibility Issues of PKCS#11

10 |

PKCS#11 Implementation for SafeNet Authentication
Client 8.0

SafeNet Authentication Client 8.0 implements PKCS#11 v2.01.

In addition, SafeNet Authentication Client 8.0 provides
implementation of some features defined in later versions of the
PKCS#11 standard.

Note:

m PKCS#11 requires the presence of a token to perform any
cryptographic operation (even if no key object is created on
the token). SafeNet Authentication Client 8.0 allows the
application to perform cryptographic operations in the
absence of a token.This so-called virtual session is explained
later in this document.

m Calling PKCS#11 functions from DLL detach is forbidden.
(For more information, see the Note in C_Finalize on page 14)

Using libeTPkcs11

libeTPkcsll is a shared library (1ibeTPkcs1ll.so) andis
installed at the following locations:

B /usr/lib/ on 32-bit machine

B /usr/lib64/ and /usr/1ib32/ on Ubuntu 64-bit

B /usr/lib64/ and /usr/1lib/ on Centos 64-bit and RHEL 64-
bit.

We strongly recommend the following:

m Use only explicit dynamic linking when linking with
libeTPkcsll, and use the full path to load the shared library to
minimize load times.

Supported Object types |

Use the dlsym() to obtain the address of C_GetFunctionList().
However, to obtain the table of other function pointers in the
shared library you should use C_GetFunctionList () and not use
dlsym().

libeTPkcs1ll maps a PKCS #11 Slot to any reader that is on the
system when the PKCS #11 library is first loaded. A token is
present in this slot whenever a token is inserted into that reader.

Supported Object types

CKO_DATA

CKO_CERTIFICATE (CKC_X 509 only)

¢ Regular certificate (CKA_CERTIFICATE CATEGORY=0)
¢ CA certificate (CKA_CERTIFICATE_ CATEGORY=2)
CKO_PRIVATE KEY (CKK_RSA only)

CKO_PUBLIC_KEY (CKK_RSA only)

CKO_SECRET_KEY

CKK_DES

CKK_DES2

CKK_DES3

CKK_HOTP

CKK_AES

CKK_RC4
CKK_GENERIC_SECRET
CKO_HW_FEATURE.

L 2R 2B 2R 2B 2 B 2

Note:

B CKK_HOTP is not supported on token models without OTP
capabilities. SafeNet eToken Virtual simulates the OTP
capacity and so supports CKK_HOTP.

B CKK_AES, CKK RC4 and CKK_GENERIC_SECRET are supported
for eToken Pro (with Format 5), eToken Pro (Java), SafeNet
eToken Virtual and virtual sessions.

B CKO_HW_FEATURE was introduced in later versions of the
PKCS#11 standard to explore various token capabilities.
Feature objects supported by SafeNet Authentication Client
8.0 are covered later in this document.

12|

Supported Mechanisms

These mechanisms are supported by all token types:

CKM DES MAC

CKM DES MAC_GENERAL

CKM DES3 MAC GENERAL

CKM DES ECB

CKM DES CBC

CKM DES CBC_PAD

CKM DES3 ECB

CKM DES3 CBC

CKM DES3 CBC_PAD

CKM RSA PKCS_KEY PAIR GEN
CKM_RSA_ PKCS

CKM RSA X 509

CKM_MD5 RSA_PKCS
CKM_SHA1l RSA_ PKCS
CKM_DES_KEY GEN

CKM _DES2_KEY GEN
CKM_DES3 KEY GEN
CKM_PBE_SHAl DES3_EDE CBC
CKM_PBE_SHAl DES2_EDE_CBC
CKM_PBA SHA1l WITH SHAl HMAC
CKM_PBE_MD5_DES_CBC
CKM_PKCS5_ PBKD2
CKM_MD5_HMAC_GENERAL
CKM_MD5_HMAC
CKM_SHA 1 HMAC_GENERAL
CKM_SHA 1 HMAC

CKM_MD5

CKM_SHA 1
ETCKM PBA LEGACY (this is a proprietary mechanism described
later in this document)

These mechanisms are supported by eToken Pro(with Format 5),
eToken Pro (Java), SafeNet eToken Virtual and virtual sessions:

CKM_AES_MAC
CKM_AES_MAC_GENERAL
CKM_RC4

CKM_AES_ECB
CKM_AES_CBC
CKM_AES_CBC_PAD

PKCS#11 Functions 13

CKM_RC4_KEY GEN

CKM_AES KEY GEN
CKM_PBE SHAl RC4_128
CKM_PBE_SHA1l RC4_40
CKM_GENERIC_SECRET KEY GEN
CKM_AES_ECB_ENCRYPT DATA
CKM_AES_CBC_ENCRYPT DATA

This mechanism is not supported on tokens without OTP capability:
m CKM HOTP
Note:

SafeNet eToken Virtual simulates the OTP capability, so supports
CKM_HOTP.

PKCS#11 Functions

This section covers details of SafeNet Authentication Client PKCS#11
implementation.

Note:

On hardware tokens, except for eToken Pro (Format 5) and eToken Pro
(Java Card), the application must perform user logon to create, change
or remove public objects.

C Initialize

According to the specifications, the subsequent call to C_Initialize
should fail with CKR_CRYPTOKI_ALREADY INITIALIZED error. SafeNet
Authentication Client returns CKR_0K and increments the 'init'-
counter. This is done to overcome the problem of PKCS#11-enabled
applications calling third-part code that also uses PKCS#11 APIL.

14|

C Finalize

According to the specifications, the subsequent call to C_Finalize
should fail with CKR_CRYPTOKI_NOT INITIALIZED error. SafeNet
Authentication Client will return this code only when the number of
subsequent C_Finalize calls overtakes the number of previous
C_Initialize calls.

Note:
Calling PKCS#11 functions from DLL detach is forbidden.

For more information see:
http://msdn2.microsoft.com/en-us/library/ms682583.aspx

According to the MSDN description of DIIMain, calling functions that
require DLLs other than Kernel32.dll may result in problems that are
difficult to diagnose. For example, calling User, Shell, and COM
functions can cause access violation errors, because some functions
load other system components. Conversely, calling functions such as
these during termination can cause access violation errors because the
corresponding component may already have been unloaded or
uninitialized.

C_Getlnfo

The information returned by this function may vary between different
versions of PKI Client. For SafeNet Authentication Client 8.0 the
following information is returned:

m cryptokiVersion =2.01

®m manufacturerID = "SafeNet, Inc."

m libraryDescription = "eToken PKCS#11"
m libraryVersion =8.0

PKCS#11 Functions 15

C_GetSlotList

According to the PKCS#11 v2.01 standard, the number of slots
returned to an application once cannot change until C_Finalize. In
reality, this may be problematic. For instance, the user may
connect/disconnect the smartcard readers. Later versions of the
standard allow returning different number of slots once the function is
called again with a NULL value of the pSlotList parameter. SafeNet
Authentication Client does not do this for several reasons. One of the
major reasons is problem of PKCS#11-enabled applications using
third-part code which also uses PKCS#11. The application may not be
aware of C_GetSlotList call done by third-part code, while SafeNet
Authentication Client cannot distinguish the source of call (in the
context of the same process). Therefore the SafeNet Authentication
Client 8.0 behaves as following:

m The number of slots reported by the C_GetSlotList function does
not change after the C_Initialize call.

® The number of reported slots (built from the number of SafeNet
eToken Virtual slots and PC/SC slots for smartcard readers and
hardware token devices) is configurable.

m The PC/SC readers are mapped to the PKCS#11 slots. Once
mapped, a slot cannot be used for another reader until
C_Finalizeis called (to avoid confusing of applications using slot
description).

C_GetSlotinfo

The information returned by this function depends on the slot in use
and may vary between PKI Client versions.

The SafeNet Authentication Client 8.0 returns the following
information:
m slotDescription is
¢ <smartcard reader name> for PC/SC slots.
¢ <file path> for software slots (cut to the field size).
¢ <empty> for reserved slots

m manufacturerID = "SafeNet, Inc."
m flags
4 CKF_REMOVABLE DEVICE

16

¢ CKF_HW_SLOT except for SafeNet eToken Virtual
¢ CKF_TOKEN_ PRESENT if the token is present in the slot

m hardwareVersion
¢ 0.0 for PC/SC slots in absence of virtual device

¢ 1.0 for token hardware devices and SafeNet eToken Virtual
managed by SafeNet Authentication Client drivers (That is,
any token device except for token Card and CCID-compliant
tokens)

¢ 2.0 for smartcard readers and CCID-compliant token.

m firmwareVersion =0.0

Note: More information may be received via vendor-specific
extensions.

C_GetTokenInfo

The returned information depends on the token in use. In some minor
details it may vary between PKI Client versions. The information
returned by this function has been extended according to latest
PKCS#11 version.

For SafeNet Authentication Client 8.0 the following information will
be returned:

m label - token label (UTF-8)
manufacturerID = "SafeNet, Inc."

B model ="eToken"
m serialNumber = token serial number
m flags

¢ CKF_RNG - except for token initialized as FIPS

¢ CKF_LOGIN_ REQUIRED - except for token initialized as one-
factor, an empty token, or SafeNet eToken Virtual.

CKF_USER PIN INITIALIZED if C_InitPIN has been issued
CKF_DUAL CRYPTO_OPERATIONS

CKF_TOKEN INITIALIZED if C_InitToken has been called
CKF_USER_PIN COUNT LOW if user PIN retry counter <3

* & & o

PKCS#11 Functions |

¢ CKF_USER_PIN_LOCKED whenever user PIN is locked. It may
be not possible to know that the PIN is locked till unsuccessful
C_Login trial.

¢ CKF_USER PIN TO_BE CHANGED if user PIN must be changed
(enforced on initialization or due to expiration). This flag is
guaranteed to be set only after successful C_Login with
CKU_USER.

ulMaxSessionCount = CK_EFFECTIVELY_ INFINITE

ulSessionCount = actual number of sessions that this application
currently has open with the token

B ulMaxRwSessionCount = CK_EFFECTIVELY INFINITE

B ulRwSessionCount = actual number of read/write sessions that
this application currently has open with the token

ulMaxPinLen = 255

ulMinPinLen depends on current password policy

ulTotalPublicMemory

¢ taken from token for hardware tokens

¢ CK _EFFECTIVELY_ INFINITE for software tokens
B ulFreePublicMemory

¢ taken from token for hardware tokens

¢ CK_EFFECTIVELY_ INFINITE for software tokens

ulTotalPrivateMemory - Same as ulTotalPublicMemory
ulFreePrivateMemory - same as ulFreePublicMemory
m hardwareVersion

¢ taken from token (except for Token Card and SafeNet eToken
Virtual)

¢ 0.0 for Token Card and SafeNet eToken Virtual

m firmwareVersion

¢ taken from token (except for Token Card and SafeNet eToken
Virtual)

¢ 0.0 for Token Card and SafeNet eToken Virtual

B utcTime - empty

Note:
More information may be received through vendor-specific
extensions.

18 |

C_WaitForSlotEvent

PKCS#11 does not provide a mechanism to cancel the blocked
C_WaitForSlotEvent call except for C_Finalize. The SafeNet
Authentication Client provides more flexible mechanism through
vendor-specific extensions.

To cancel C_WaitForSlotEvent function execution, the tracker handle
should be created in advance.This can be done using the function
ETC_CreateTracker.

After the tracker handle creation, its handle should be passed to
C_WaitForSlotEvent using the pReserved parameter. In this case, the
execution of C_WaitForSlotEvent can be canceled calling the function
ETC_DestroyTracker.

See also: ETC_CreateTracker (page 64), ETC_DestroyTracker
(page 65).

C _InitToken

The behavior of C_InitToken in PKI Client 5.0 is not compatible with
earlier versions of eToken RTE. The results of C_InitToken may be
affected by PKI Client settings. Look for vendor-specific extensions for
more details.

C_SetPIN

® The function C_SetPIN may be called with NULL as old and new
PIN. In this case the SafeNet Authentication Client UI will be
launched.

m If the user (CKU_USER) PIN cannot be changed due to password
policy restrictions of the token, CKR_INVALID PIN will be
returned.

m If the new user (CKU_USER) PIN does not fit the password policy
requirements of the token, CKR_INVALID_ PIN or
CKR_PIN_LEN_RANGE will be returned.

C_InitToken 19

C_Login

If the user PIN must be changed, the ¢_Login will succeed, but the
subsequent calls to C_GetTokenInfo will return

CKF_USER_PIN TO BE_CHANGED flag set. Any further call requiring
the user to be logged in will fail as long as C_SetPIN is not issued.

The function C_Login may be called with NULL as a PIN. In this
case the SafeNet Authentication Client UI will be launched. It will
also handle the issue of password change (according to the
password policy of the token).

In Single Logon mode, the user can log on without entering a PIN
value, if the PIN value was supplied to the PKI Client during a
previous log on. To enable this, the PIN parameter must contain a
predetermined value. You can get the predetermined value using
ETC_SingleLogonGetPin. See ETC_SingleLogonGetPin, on

page 68.

C_CopyObiject

The function ¢_cCopyObject does not allow objects to be copied
between tokens, as it is not possible for hardware tokens to copy
private RSA keys.

C_GetObjectSize

According to the PKCS#11 specifications, the C_GetObjectSize
function returns an approximate object size and may be slightly
inaccurate. As a result, when deleting or creating an object (for
example using C_CopyObject), the reported number of bytes may not
be completely accurate and should be monitored.

C_GetAttributeValue

SafeNet Authentication Client may return particular attributes of
private objects even after C_Logout.

The following attributes may be returned:

CKA TOKEN

20

CKA_PRIVATE
CKA_CERTIFICATE_TYPE
CKA_KEY_TYPE

CKA_ALWAYS_ AUTHENTICATE
CKA_MODULUS
CKA_PUBLIC_EXPONENT

C_GenerateKeyPair

SafeNet Authentication Client 8.0 allows passing NULL as a
phPublicKey parameter. In this case only a private key will be
generated.

Token devices based on CardOS version 4.01 ignore the public
exponent value passed by an application.

C_DeriveKey

The function C_DeriveKey returns CKR_FUNCTION NOT SUPPORTED.

C_SeedRandom

The function C_SeedRandom returns success (CKR_OK).

C_CreateObject

The boolean attribute ETCKA_DESTROYABLE is used to create non-
deletable PKCS#11 objects. This attribute is given in C_CreateObject
function in the caller-defined object’s template. To create non-deletable
PKCS#11 objects (RSA keys, certificates, data objects and so on) the
ETCKA_DESTROYABLE attribute must be equal to CK_FALSE. The

objects defined as non-deletable can’t be changed, except by
initializing the token.

The default value is CK_TRUE. This means the new object will be

deletable by default if its creation template has no
ETCKA_DESTROYABLE attribute.

Major Backward Compatibility Issues of PKCS#11 | 21

X.509 Attribute Tolerance

The following conditions should be met when creating a certificate:

m The certifcate must be created in the DER encoded X.509 format.

®m The serial number, subject and issuer objects of the internal
certificate (CKA_VALUE) must match the external attributes
(CKA_SERIAL_NUMBER, CKA_SUBJECT, and CKA_ISSUER).

If the above conditions are not met, the TolerantX509Attributes
attribute must be set to 1(True). If set to O(False), the above conditions
must be met.

TolerantX509Attributes was enabled by default in eToken PKI Client
versions earlier than 4.0.

Major Backward Compatibility Issues of PKCS#11

The following compatibility issues relate to eToken RTE 3.65. There
has been no change in these issues between etoken PKI Client 4.0 and
5.0.

m Behavior of functions C_InitToken and C_InitPIN has changed.

m Previous versions might display pop up windows in various
situations. For instance, if token requires user to be logged in to
change the public object, the UI could appear to ask for the user
password. PKI Client 4.0, 4.5 and 5.0 do not display a Ul except
that covered by this document (which may be predicted and
eliminated by the application).

m Information returned by C_GetSlotInfo and C_GetTokenInfo
varies.

m PKI Client now enforces password policy mechanisms as
described in later versions of the PKCS#11 standard.

®m The implementation of CryptAcquireContext deals with flags
(CRYPT_NEWKEYSET | CRYPT_SILENT) in different ways in
PKI Client 4.55 and 5.00.

In the previous versions of PKI those flags lead to function failure,
while in the current version of PKI the function succeeds.

22

CryptAcquireContext with CRYPT_NEWKEYSET is a first step in
the two-step process of RSA key generation or import. The entire
process requires that the user enters a token password. Since the
flag CRYPT_SILENT contradicts this, the process of the key
generation or import will fail.

The difference between previous and current implementations is
that in the previous implementations, the failure occured in the
tirst step (CryptAcquireContext), while the new implementation
failure occurs at the second step (CryptGenKEy or
CryptImportKey) only if the user didn't log in.

SafelNet.

Chapter 3

Token-Specific PKCS#11 Extensions

SafeNet Authentication Client 8.0 provides a wide functionality that
cannot be expressed in terms of the PKCS#11 standard. It is provided
through special extensions to PKCS#11.

In this chapter:

m General Overview

m Vendor-Specific Information

m Reference

24 |

General Overview

Understanding Token-Specific PKCS#11 Extensions

The extensions are as follows:

Extensions to the future standard versions. The SafeNet
Authentication Client implements PKCS#11 v2.01. However, it
supports many features introduced in the later versions of the
PKCS#11 standard. They are covered in this document. The
examples of such extensions are:

¢ OTP support;
¢ Distinguishing between user and CA certificates;

Return codes and flags related to the password policy.

Vendor-specific attributes that can be implemented in the regular
PKCS#11 objects. The example of such attribute is duration of OTP
value presentation on the token.

Feature objects: PKCS#11 v2.20 introduces hardware feature
objects (CKO_HW_FEATURE) as PKCS#11 objects representing
various device features. The application does not create such
objects. Neither has it found them in the typical
C_FindObjectsInit call unless the particular feature type was
explicitly specified in the search template. SafeNet Authentication
Client uses feature objects to represent and manage various token
characteristics. The most useful feature objects are token object
(ETCKH_TOKEN OBJECT) representing the whole token and
Password Policy object (ETCKH_PIN_ POLICY) representing PIN
policy settings of the token. Feature objects are not considered
storage objects, so they do not have a CKA_PRIVATE attribute.
Unless specified differently, they behave as follows:

¢ They may be read without authentication.

¢ They have attribute CKA_MODIFIABLE attribute specifying if
the object may be changed in principle. Some attributes
cannot be changed by program: they represent the real status
of the object and are changed only as a part of token
operations (such as last password change date).

¢ They have attribute ETCKA_ OWNER (CK_ULONG) defining who

may change the object. The token object has not such
attribute. The supported values are:

General Overview | 25

¢ CKU _USER

¢ CKU SO
¢ If cka MODIFIABLE is FALSE, this attribute should be
ignored

m Vendor-specific functions are used whereas some SafeNet
Authentication Client functionality cannot be expressed properly
via existing PKCS#11 functions. The application uses function
ETC_GetFunctionListEx to get the structure of pointers to the
vendor-specific functions (just as it uses C_GetFunctionList to
get the structure of pointers to the standard functions).

The following sections describe the functionality provided by the
token-specific PKCS#11 extensions. The next section contains the
formal reference.

Encoding of Text Attributes, Fields and Parameters

UNICODE Support

Some functions have parameters that may be treated as text strings.
The typical example is filename of SafeNet eToken Virtual. Whenever
it is not mentioned, UTF-8 is assumed. A function that creates SafeNet
eToken Virtual or associates it with the slot should get a UTF-8 string.
In non-UNICODE applications, passing a null-terminated ASCII
string is enough.

Note:

A particular token may have restrictions on the storing of non-ASCII
information for backward compatibility. We therefore recommend
using ASCII-only.

Null-termination of strings

Usually, the PKCS#11 spec does not use null-terminators for strings:

m For object attributes, the attribute length is passed explicitly.
m Structure fields have a fixed size (and are usually blank-padded).

SafeNet Authentication Client extensions, in most cases, follow a more
friendly convention. Unless specified otherwise:

26

The returned attributes are null-terminated (the attribute length
takes into account the null-terminator).

The SafeNet Authentication Client is ready to get the incoming
attributes with and without a null-terminator.

SafeNet Authentication Client

Many aspects of the SafeNet Authentication Client behavior are
configurable. Typical examples of configurable behavior are:

Password quality settings to be used when initializing the token.
2048-bit RSA key support.

The configurable aspects of the SafeNet Authentication Client vary in
their flexibility:

Some of them may be modified by user, while others may be
modified only by the computer administrator.

Some of them may be configurable permanently on a per-
application basis.

Some of them may even be modified per-process in the run time.

The SafeNet Authentication Client provides the following functions to
deal with properties:

ETC_GetProperty returns the current setting of particular
property. Depending on the property the same value may be or
may be not returned for all processes.

ETC_SetProperty sets the new value for the property. If an invalid
value is passed, the function may not fail, but the result may not
be as expected by the application. The property may be changed
for the entire process or for the current thread only, depending on
the passed ETCKF_PROPERTY_THREAD flag. Passing NULL value
effectively resets the effect if the all previous calls to
ETC_SetProperty.

General Overview | 27

Slot/Token IOCTL

Some rarely used operations are not presented as separated functions.
They are joined to multi-purpose IOCTL functions instead. There are
two such functions:

ETC_DeviceIOCTL gets slot ID as a parameter. This function is
necessary since standard PKCS#11 provides almost no functions
that can be applied to the slot. It is dedicated to operations
targeted to a particular slot (possibly even in the absence of the
token). An example of such operation is getting the filename
associated with SafeNet eToken Virtual.

ETC_TokenIOCTL gets session and object handles as parameters.
This function is necessary for operations that cannot be
reasonably impressed via existing PKCS#11 functions (like getting
or setting particular attributes).

Extensions Related to Operations with Slots and Tokens

SafeNet eToken Virtual

The SafeNet eToken virtual is a file in a special format that acts as a
token in terms of PKCS#11. Private objects in this token are encrypted
with the user password. It is mostly used as a part of employee on the
road solution.

Use ETC_DeviceIOCTL with
ETCK_IODEV_SOFTWARE TOKEN PLUGIN to plug-in the SafeNet
eToken virtual to the free slot.

Use ETC_DeviceIOCTL with ETCK_IODEV_FULL NAME to get the file
name of the file associated with the slot.

Use ETC_DeviceIOCTL with
ETCK_IODEV_SOFTWARE TOKEN_ PLUGOUT to disconnect the SafeNet
eToken Virtual. The file is not removed on this stage; the
application may remove it manually.

Note:
SafeNet eToken virtual does not support CKU_so.

28 |

Transactions

The SafeNet Authentication Client ensures that no other application
will use the same token during a single application call to any API
function. However it is possible to lock a token for longer period of
time. The function ETC_BeginTransaction is used to lock the token
for the exclusive use of the application. The function
ETC_EndTransaction unlocks the token.

Note the following:

m Transactions are usable when application prepares its data on the
token. It ensures that the token state is not changed by any other
application during the transaction.

®m Transactions are usable when application performs the sequence
of operations with the token. It may increase the performance
significantly.

m Transactions do not guarantee a log of changes done to the token.
If the token is removed or the application crashes during
transaction, the data on the token will not be rolled back. It is
more similar to the smartcard locking, not to the database
transaction.

®m Aslong as the transaction is opened, other applications will not be
able to access the token, even for the most innocent operations
(such as C_GetslotList). Do not keep the transaction opened
longer that it is needed.

®m Do not use any interactive UI during transactions.

Notifications

A major problem with the standard event tracking mechanism in
PKCS#11 (c_WaitForSlotEvent) is that it cannot be stopped. It will
continue listening till C_Finalize call. Sometimes this behavior is too
restrictive. The proposed solution uses the last reserved parameters of
the function. The application should:

m Create the tracker by calling proprietary function
ETC_CreateTracker.

m (Call c_waitForSlotEvent, passing the pointer to the tracker as a
parameter in order to start listening.

m Destroy the tracker by calling the proprietary function
ETC_DestroyTracker to stop listening.

General Overview | 29

Token-Less Operations

PKCS#11 cryptographic operations are performed within a session
opened with a token. So, in the absence of a token, cryptographic
operations cannot be launched (even if it would use only session
objects). SafeNet Authentication Client overcomes this restriction with
the function ETC_CreateVirtualSession. This allows the creation of a
session that is not associated with any token. Multiple calls to this
function create multiple independent sessions. The virtual session is
used to perform token-less operations, such as cryptographic
operations used for token unblocking. The function
C_GetSessionInfo for a virtual session will fail with error code
CKR_FUNCTION FAILED.

Password Quality Settings

The SafeNet Authentication Client enforces the password quality
settings when working with the token. The password quality settings
may include:

Minimum password length

Maximum password usage period

Minimum password usage period

Warning period before password expiration

Password history size

Minimum character repetitions in a password

Password complexity rules

¢ Numerals, upper-case letters, lower-case letters or special
characters permitted, mandatory or forbidden.

In addition, the administrator may enforce users to change the
password upon the first use.

30

The password quality settings for the particular token is defined
during the token initialization and may be changed later. If no
password quality setting is stored on the token (it may be done
intentionally or the token may be initialized with a previous version of
eToken PKI Client), the current settings of the SafeNet Authentication
Client on the machine will be used. They are defined by the
corresponding SafeNet Authentication Client.

Note:

The password policy mechanism implemented in the eToken PKI
Client 4.0, 4.5 and 5.0 is not backward compatible with the former
versions of the eToken PKI Client.

The mechanism operates as described in the PKCS#11 v2.20:

m If user must change the PIN (due to administrator enforcement or
expiration), the C_Login with CKU_USER will succeed.

m The subsequent call to C_GetTokenInfo will return
CKF_USER_PIN TO_BE_CHANGED flag set.

m Until C_setPIN is done, any subsequent PKCS#11 call which
requires user to be logged in will fail with the error code
CKR_PIN EXPIRED.

m If the newly supplied PIN cannot be accepted due to the current
password policy, the function C_setPIN will fail with the error
code either CKR_PIN_ LEN RANGE (for too short password) or
CKR_PIN_INVALID (for any other failure).

Extended features in eToken PKI Client 5.0

The eToken PKI Client 5.0 extends the standard capabilities with the
following features:

m Using c_setPIN with NULL passed as both old and new PIN, the
application invokes the eToken PKI Client UI. It manages
automatically all aspects of the password policy, performing all
necessary checks.

®m Similarly using C_Login with NULL in the case when the user
password change is enforced will switch you automatically to the
password change process.

m The password policy settings of the particular token may be
examined and controlled by using the special hardware feature
object ETCKH_PIN_POLICY. This object may be created during the
token initialization.

General Overview | 31

The current settings of the PKI Client itself may be examined by
reading the corresponding properties.

By issuing C_GetSessionInfo after C_Login or after unsuccessful
C_SetPIN, the application may get more detailed information
about particular need to change the password or about particular
reason of failure to change it. It is returned in the ulDeviceError
field.

The IOCTL ETCK_IOCTL PIN_ EVALUATE may be issued to check the
acceptance of the new password without a real attempt to change
it.

Additional Notes

The password policy is applied only to the user PIN.
When administrator sets the user PIN (C_InitPIN or
ETC_InitPIN) functions, the password policy is not applied.

When the using PIN is unlocked by using challenge-response
authentication (ETC_UnlockPIN) the password policy is applied
but the minimal password age is ignored.

Special Token Capabilities

OTP

SafeNet Authentication Client supports One Time Passwords (OTP) as
defined in PKCS#11 v2.20 Amendment 1 (PKCS#11 Mechanisms for
One-Time Password Tokens). The only currently supported
mechanism is CKM_HOTP.

When using OTP functionality, the following should be kept in mind:

Not all tokens support OTP functionality. The application should
check whether the token supports the CKM_HOTP mechanism.

The supported key length may vary between tokens. It should be
checked by application by using the C_GetMechanismInfo
function.

The hardware tokens supporting OTP have some restrictions. In
particular:

¢ Only one OTP key per token is supported.

32

¢ The flag CKF_NEXT OTP is not supported for hardware tokens
(for security ‘reasons).

¢ The flag CKF_EXCLUDE_COUNTER is supported, but on some
older models of eToken NG-OTP the operation may fail.

¢ The following attributes are not supported for hardware
tokens:

¢ CKA OTP_USER_IDENTIFIER
¢ CKA OTP_SERVICE_IDENTIFIER
¢ CKA OTP_SERVICE_LOGO
¢ CKA OTP_SERVICE LOGO_TYPE
¢ The followmg vendor—spec1f1c attributes are supported for the
hardware tokens:

¢ [ETCKA OTP_DURATION - duration of OTP value
representation on the LCD, in seconds. May be passed
during creation. May be possible to change later,
depending on ETCKA MAY CHANGE DURATION.

¢ ETCKA MAY SET DURATION - defines whether it is possible
to change duration after object creation. Cannot be
changed after object creation.

It is possible to use the CKM_HOTP mechanism in the virtual session
(to perform server-side OTP validation).

CKA_OTP_TIME attribute is not supported as it has no sense for
CKM_HOTP.

The newly introduced notification (CKN_OTP_CHANGED) is not
supported by the SafeNet Authentication Client.

For SafeNet eToken virtual, the OTP key object behaves according
to the CKA_PRIVATE attribute. For hardware tokens, CKA_PRIVATE
attributes is ignored as assumed to be FALSE. However object
creation, deletion or changing the display duration requires
CKU_USER to be logged in.

Other attributes defined in PKCS#11 have the following restrictions:

CKA_OTP_FORMAT - only CK_OTP_FORMAT DECIMAL is supported.
CKA_OTP_LENGTH - must be 6 (according to HOTP spec).

CKA_OTP_CHALLENGE_REQUIREMENT - should be
CK_OTP_PARAM IGNORED.

CKA_OTP_TIME REQUIREMENT - should be CK_OTP_PARAM IGNORED.

CKA_OTP_COUNTER REQUIREMENT - should be
CK_OTP_PARAM OPTIONAL for virtual sessions and
CK_OTP_PARAM IGNORED otherwise.

Vendor-Specific Information | 33

CKA OTP_PIN REQUIREMENT - should be CK_OTP_PARAM IGNORED.

CKA_OTP_COUNTER (byte array). It shall be 8-bytes in big-endian
form. The default value upon creation is 0. This value is non-
modifiable (except for virtual session).

Vendor-Specific Information

Vendor-specific APIs are defined in the eTPkcs11.h header file.

Vendor-Specific OTP Key Attributes

The following vendor-specific attributes are defined for OTP keys:

ETCKA_OTP_DURATION - duration of OTP value representation on
the LCD, in seconds. May be passed during creation. May be
possible to change later, depending on

ETCKA MAY CHANGE DURATION.

ETCKA MAY SET DURATION - defines whether it is possible to
change duration after object creation. Cannot be changed after
object creation.

Secondary authentication

Understanding Secondary Authentication

The SafeNet Authentication Client may support the additional level of
protection for RSA private keys. In this mode an additional password
must be supplied each time when the cryptographic operation with
the RSA private key is performed. This feature is named secondary
authentication, meaning that in order to use the particular RSA key,
the application should pass an additional (secondary) authentication
(the usual user login is considered as a primary authentication).

The secondary authentication is controlled by combination of two
factors: the key object attributes passed during the RSA key object
creation and the special hardware feature object ETCKH_2AUTH.

34

Most PKCS#11 applications are not aware of the secondary
authentication mechanism (as it was added only in v2.20 of the
PKCS#11 spec). The special hardware feature object allows
configuration of the default behavior of the token, giving more
flexibility and power to the off-the-shelf applications.

Creation of the Protected RSA Key

The later versions of PKCS#11 standard introduces the new attribute
for the RSA private key object: CKA_ ALWAYS AUTHENTICATE. Being set
to TRUE during object creation, this attribute defines that the PIN
presentation is required each time when the key is used. The standard
does not define whether it is the regular user PIN or the separate PIN.
The SafeNet Authentication Client uses separate PIN for each such
key. Note that this PIN is not synchronized with the regular user PIN
(is not changed together with it, is not subject to any PIN policy and
cannot be unlocked). This key is required later for each cryptographic
operation and is not required for any other operation with the key
(such as changing of particular attributes or object deletion).
According to the standard, this attribute cannot be changed after
object creation.

The PKCS#11 spec does not address the passing of the initial PIN
value during key creation. The SafeNet Authentication Client
introduces for this purpose the proprietary attribute ETCKA

_2NDAUTH_PIN, which contains a UTF-8 encoded PIN value. This
attribute may be used only during object creation. If this attribute is
not passed, the SafeNet Authentication Client will pop up the special
window, asking user to enter the password. If it is not supplied (user
cancels the operation), the behavior depends on ETCKH_2AUTH object,
described below.

Supplying Special PIN to the RSA Private Key Operation

The PIN for the secondary authentication is provided according to the
v2.20 of the PKCS#11 spec:

m The application issues a PKCS#11 call starting the cryptographic
operation (such as C_SignInit) with the RSA key protected with
the secondary authentication PIN (having
CKA_ALWAYS_AUTHENTICATE attribute set to TRUE).

Vendor-Specific Information | 35

m The application issues a C_Login call within the same session,
passing CKU_CONTEXT SPECIFIC instead of the user type and
proper PIN.

m The application completes the cryptographic operation.

SafeNet Authentication Client extends this behavior to support
secondary authentication protected keys in the legacy applications in
the following way: if C_Login with CKU_CONTEXT SPECIFIC was not
issued for the secondary authentication protected key, the SafeNet
Authentication Client will pop up the window asking user to supply
the password.

The SafeNet Authentication Client does not provide an interface to
change the per-key PIN after creation.

Configuring Secondary Authentication for the Token

The special hardware feature object ETCKH_2AUTH controls the
behavior of the secondary authentication feature on a per-token basis.
It controls the creation of the new RSA private key objects (once the
particular key object has been created, its behavior cannot change
anymore). This feature object may be created during the token
initialization session (otherwise it is created automatically).

Token initialization

Why Extensions are Needed for Initialization

The initialization functions provided in PKCS#11 (C_InitToken and
C_InitPIN) are not flexible enough. This is because tokens from
different vendors are so different, it is almost impossible to cover them
all by the same standard API Below are just several features of
SafeNet Authentication Client that cannot be covered by the standard
functions.

m [tis impossible to define error retry counters for user and SO PIN.
m If the token is initialized in several modes (for instance, FIPS or
one-factor), there is no way to address it.

m If the token has special capabilities that should be explicitly
enabled (such as OTP support) there is no way to do it.

36 |

Proprietary Initialization Functions

The token-initialization is two-or-more steps process. In order to
manage this process the following proprietary functions are

introduced:

B ETC_InitTokenInit - this function starts the process of token
initialization.

B ETC_InitTokenFinal - this function completes the process of
token initialization.

B ETC_InitPIN - this function initializes the user PIN (providing

more flexibility than the standard function C_InitPIN).

Initialization Flow

The flow of initialization is as follows:

1.

The application explores token capabilities, such as the ability to
support OTP, and pre-requisites required for initialization (need
for the old PIN) in the regular session, using the token hardware
feature object.

The application closes all open sessions with the token. This is
because PKCS#11 requires that no sessions are open during
C_InitToken call.

ETC_InitTokenInit starts the initialization process and opens the
special session. This session serves as the context of initialization
and will be closed in ETC_InitTokenFinal call. The application
may close it by C_ CloseSession call to cancel the initialization. It
is important to mention that the token will remain in
unpredictable state. SO PIN is ommited in the following
cricumstances.

a. Initializing the token without SO. This will happen if
C_InitPIN or ETC_InitPIN is called during the initialization
session.

b. Initializing one-factor token or empty token (depending on
subsequent calls).

If the token requires old password to be presented in order to re-
initialize the token, the application should issue the proper
C_Login call.

Vendor-Specific Information | 37

5. Issue C_CreateObject to create the token object. Unless you
initialize the token as empty, this is a mandatory step. Optionally
issue more C_CreateObject calls to create other feature objects.
Typically, the password policy object is created here. Note that
you create feature objects here. This is allowed only in an
initialization session. Any attempt to create an object that makes
no sense for the initialization process may fail (or
ETC_InitTokenFinal may fail).

6. Issue C_InitPIN or ETC_InitPIN. This function initializes the user
PIN. ETC_InitPIN gives you more flexibility. These functions are
not subject to the password policies. If you do not issue this call:

a. If the token has SO PIN, the token will be initialized, but the
CKF_USER PIN INITIALIZED flag will be reset in the token
info. The application will not be able to perform user login,
until the SO initializes the user PIN.

b. If the token has no SO PIN, one-factor or empty token is
assumed (depending on the attributes of the created token
object.

7. TheETC_InitFinal call completes the token initialization process
and closes the initialization session.

Notes:

m The SafeNet Authentication Client may perform part of the job
during calls issued by an application or just collect the
information and perform the entire process during
ETC_InitFinal. This is implementation specific and may change
between SafeNet Authentication Client versions. The application
cannot assume the exact behavior.

m The valid or invalid values of attributes or parameters may
depend on the entire process. For example, passing non-NULL
label in the ETC_InitTokenInit function is correct except when
the token object defines the token as empty following creation.
Similarly, the passing of a password-policy object assumes that the
initialized token contains a user password.

m Some of parameters depend on the token type. For example, many
parameters will not make sense for a software token.

®m Only special objects controlling the flow of initialization may be
created in the initialization session.

Here are several examples of the initialization flow:

38

To create an empty token:

ETC_InitTokenInit(SO:NULL, Label=NULL)
ETC InitTokenFinal ()

To create a one-factor authentication token (no user PIN)

ETC_InitTokenInit(SO:NULL)
C_CreateObject(ETCKH_TOKEN_OBJECT with
ETCKA ONE FACTOR=TRUE)

ETC InitTokenFinal ()

To create a token without SO

ETC InitTokenInit (SO=NULL)

optional C CreateObject (ETCKH TOKEN OBJECT)
optional C CreateObject (ETCKH PIN POLICY)

C InitPIN() or ETC InitPIN()

ETC InitTokenFinal ()

To create a token with SO

ETC InitTokenInit (SO is not NULL)

optional C CreateObject (ETCKH TOKEN OBJECT)
optional C_CreateObject (ETCKH PIN POLICY)

C InitPIN() or ETC InitPIN() // may be postponed
ETC InitTokenFinal ()

Controlling Initialization Parameters

For all attributes defined here, unless stated otherwise:

If an attribute is not passed, the corresponding property setting is
looked for in the registry.

If there is no such setting, SafeNet Authentication Client has some
internal behavior (described together with an attribute). In rare
cases this internal behavior may be token-dependent.

Vendor-Specific Information | 39

Creation of Token Object

The token object is used to define the major characteristics of the
newly initialized token. The following attributes may be set when
creating this object during initialization:

CKA_CLASS - Mandatory, must be CKO_HW_FEATURE

CKA_HW_FEATURE_TYPE - Mandatory, must be
ETCKH_TOKEN OBJECT

ETCKA_FORMAT VERSION - If not passed, the default value will
depend on the token type. For all CardOS based token devices the
default value is taken from the property LEGACY-FORMAT-VERSION.

ETCKA ONE_FACTOR - TRUE if the token should be initialized as
one-factor. Default: FALSE.

ETCKA_FIPS - TRUE if token should be initialized as FIPS-
compliant. Default: FALSE.

ETCKA_HMAC_SHAL - TRUE if HMAC_sHAL support is required. This
algorithm is essential for OTP support. It is ignored for SafeNet
eToken Virtual Default: TRUE for all eToken NG models.

ETCKA RSA 2048 - TRUE if the token is required to support 2048-
bit RSA keys. It is ignored for SafeNet eToken Virtual and for all
token models having on-board support for 2048-bit RSA (CardOS
4.20b based tokens). Default: TRUE for all eToken Pro models
using CardOS 4.20 and higher.

ETCKA RSA AREA SIZE - size of area (in bytes) to be reserved for
RSA keys. CardOS-based tokens use this parameter to reserve the
place for RSA keys. The RSA keys may be created only within this
area (and it cannot be used to store any other data). Passing 0
prevents creation of RSA keys on the token (effectively leaving
more place for data). Default: RTE computes it based on card
EEPROM size.

40 |

Creation of Password Policy Object

Typically, the process of token initialization includes creation of the
password policy object (unless a one-factor or empty token is
initialized). If this object is not created during token initialization,
there will be no on-token password policy management and SafeNet
Authentication Client will use the current password policy of the
computer each time (which may cause the token to behave differently
on different computers). The following attributes may be set when
creating the object:

B CKA CLASS - Mandatory, must be CKO_HW_FEATURE

B CKA HW_FEATURE TYPE - Mandatory, must be ETCKH_PIN POLICY

®m ETCKA PIN POLICY TYPE - Mandatory, must be
ETCKPT_GENERAL PIN_POLICY

B ETCKA OWNER - Default: cCku_so for token with SO, CKU_USER
B CKA MODIFIABLE - Default: TRUE if ETCKA_ OWNER = CKU_SO

All other attributes of the password policy object may be passed,
except for ETCKA_PROXY. Any missing attribute is taken from the
corresponding SafeNet Authentication Client. The typical way is to
create the password policy object with mandatory attributes only,
enforcing the default settings from the SafeNet Authentication Client
properties to be taken.

Note:

The application is responsible for the consistency of the attributes,
even if some of them are passed explicitly and others are taken from
the properties. For example, if the minimal password age is set equal

to or higher than the password expiration period the operation will
fail.

Token Initialization Keys

Token initialization keys may be set to ensure that the token may be
initialized only by the proper entity. This is required only for CardOS-
based tokens.

Vendor-Specific Information | 41

The old key is assumed to be the current one. The new key is assumed
to be switched-to after initialization. Absence of one of them means
that the default key is used. So, if an application needs to use the
initialization key differing from the default (but not to change it) it
should create two objects with the same key value.

Note:

If the wrong initialization key is passed, the initialization will fail. By
continuous failures the application may lock the key and it will not be
possible to re-initialize the token.

Typically the tokens are shipped already initialized with the default
key. So, if application does not need to gain more control over the
initialization process, there is no need to create these objects.

If created, the key objects should have the following attributes:
B CKA CLASS = CKO SECRET KEY

W CKA_KEY TYPE = CKK DES2

B CKA LABEL = OLDKEY Or NEWKEY

B CKA VALUE = 16-bytes key value

Note:

PKI Client versions previous to version 4.0 performed MD5
calculations on passed values before actually using it with the token.
This was done to serve applications supplying data from human
input. PKI Client 4.0, 4.5 and 5.0 take the passed value as the key
material without any additional conversion. This option is useful for
big deployments where initialization keys may vary for each token
and are kept in a database. If your application wants to use the same
inputs as in former RTE versions, compute MD5-hash of your data
and use the output as the key value. This is exactly what SAPI does to
ensure backward-compatibility.

Other Hardware Feature Objects

The initialization process is the only opportunity to create other
hardware feature objects (such as ETCKH_2NDAUTH and
ETCKH_PRIVATE CACHING).If not created explicitly by application, they
will be created automatically by the SafeNet Authentication Client.

42 |

PIN Initialization

The user PIN may be initialized by C_InitPIN function (as described
in PKCS#11 standard). There is proprietary function ETC_InitPIN
that:

m Provides the retry counter for newly created PIN.

m Forces the user to change the PIN upon the first login.

Both functions may be called in the same conditions, either in the SO
session or in the special initialization session described previously.

Behavior of Standard C_InitToken and C_InitPIN Functions

The standard way to initialize tokens in PKCS#11 is by issuing a
C_InitToken call followed by a C_InitPIN call. It is very restrictive
and provides no flexibility. The functions are supported by SafeNet
Authentication Client are as follows:

B C_InitToken treats the passed PIN as new SO PIN.

m If the token was initialized without SO and required user
password for re-initialization, the operation will fail.

No password policy object is created (proxy behavior).

Software token cannot be initialized via C_InitToken (since it
does not support SO).

m All decisions in regard to customizable parameters are taken
automatically by SafeNet Authentication Client and may vary in
the future versions. Some of them may be affected by various
property settings.

m The token has the CKF_USER_PIN_ INITIALIZED flag reset, until the
C_InitPIN (or ETC_InitPIN) function is be called.

Vendor-Specific Information | 43

Backward Compatibility Issues

Tokens Initialized by Earlier PKI Client Versions

If a token formatted in a previous PKI Client version had the
CKF_USER_PIN INITIALIZED flag reset, the token will behave
differently now. In previous PKI Client versions, PKCS#11 would fail
to login with such a token. In SafeNet Authentication Client 8.0 the
CKF_USER_PIN INITIALIZED flag is not set for such a token, but
password policy enforces password change on the first login.

Using Tokens Initialized by PKI Client 4.0, 4.5 or 5.0 in Earlier Versions

The application should consider whether to initialize the token to be
backward compatible. Keeping token backward compatible may have
significant performance penalty. Tokens are not expected to work
slower than in older PKI Client versions in most real-life scenarios, but
some performance gain will be adversely affected.

Using some features (such as one-factor authentication) prevent token
from being backward compatible.

Earlier PKI Client versions will ignore password policy settings of the
token, as they used a different mechanism.

The way to control during initialization whether the token will be
backward compatible is by setting the ETCKA FORMAT VERSION
attribute (explicit or via property) in the token object. If the token is
initialized to be backward compatible, C_InitPIN or ETC_InitPIN
must be called during initialization session.

Enforcement of password change for backward-compatible CardOS
tokens will be displayed in earlier eToken RTE versions as "PKCS#11
PIN not initialized".

Backward Compatibility of C_InitToken/C_InitPIN

In PKI Client versions earlier than 4.0. there were complicated
recommendations of how to re-initialize the token. These
recommendations are now irrelevant. Vendors are strongly
encouraged to use the new mechanism described in this document.

44 |

Special Authentication Features

Single Logon Mode

SafeNet Authentication Client supports the Single Logon mode,
where one application actually performs login. Below is the
description of this mechanism:

m Until the application performs CKU_USER login, it cannot access
private objects.

®m The application may issue proprietary call to the function

ETC_SingleLogonGetPin. If the Single Logon mode is disabled or

if the password was not entered in this user session, the function
fails.

m If the password is available, the function will return with some
printable data string. The application may then use this string in
the consequent C_Login call. The string does not contain the user
password. It is just a marker enforcing the SafeNet Authentication
Client to use the password entered in another application.

m The SafeNet Authentication Client supports a timeout setting for
Single Login mode. This timeout defines how long since the

password was really supplied to SafeNet Authentication Client, as
it may be used by other applications. After the timeout occurs, the

consequent calls to ETC_SingleLogonGetPin fail as long as the

password is not supplied again by an application in the same user

session. Reaching timeout does not affect the login state of the
applications.

m The Single Logon mechanism fits user password only (not SO).

One-Factor Authentication

The SafeNet Authentication Client allows a token to be initialized
without requiring a user password. We usually recommend
eliminating the use of this feature, as it decreases the security
dramatically. Still, some organizations may prefer using token as
single-factor authentication solution.

Vendor-Specific Information | 45

If token has been initialized as one-factor, the flag

CKF_LOGIN_ REQUIRED in the token information structure will not be
set. The CKA_PRIVATE attribute will be effectively ignored and all
objects will be created as public objects. Such token does not require
C_Login call. However, there are two cases when the C_Login call is
successful:

B C_Login with NULL will succeed. It is done to simplify
applications working with RTE UL

B C_Login with some pre-defined (undocumented) value will
succeed. This is done to support a future Password Management
application.

Any other call to C_Login will fail.

The one-factor mode is supported only for hardware tokens (that is,
where there is another factor of authentication except for the user PIN
- the token presence).

User PIN Unlocking

If a user forgets the PIN, the administrator (SO) logon is required in
order to reset the user PIN to a known value. This may be problem in
a distributed environment, where the administrator is physically
located at a different site. Administrators will usually not reveal their
password to the user, so the standard mechanism of PIN unlocking
may not be usable. The SafeNet Authentication Client supports an
alternate mechanism based on challenge-response authentication:

®m The application issues ETC_UnlockChallenge call getting the
cryptographic challenge from the token.

m The application passes this challenge to the administrator in any
way (network connection, email, phone, Web helpdesk site and so
on) and gets back the cryptographic response (based on the
challenge and the administrator password). The token itself is not
necessary for a computing response.

m The application issues ETC_UnlockResponse call, passing both the
cryptographic response and the new password.

Notes:

To check whether the particular token supports challenge-
response mechanism for the user PIN unlocking, the application
should check presence of the hardware feature object
ETCKH_SO_UNLOCK This mechanic is available for all token devices
initialized with administrator password except for tokens
initialized as FIPS.

No operations with the token should be performed between
ETC_UnlockChallenge and ETC_UnlockResponse calls, otherwise
the authentication will fail (while decrementing the SO PIN retry
counter).

The server application should be able to convert the SO PIN into
the cryptographic key. Different tokens may use different
password-derivation mechanisms (such as those defined in
PKCS#5 and PKCS#12 standards). All current token models use
the proprietary algorithm. The description of this algorithm may
be reached from Aladdin Knowledge Systems and is out of the
scope of this document. If the server application uses SafeNet
Authentication Client (virtual session), it may use
ETCKM PBA LEGACY mechanism.

Using SafeNet Authentication Client Ul

The SafeNet Authentication Client allows passing of NULL as PIN in
C_Login/C_SetPin functions. This will enforce SafeNet
Authentication Client to pop-up the window for login or password
change correspondingly.

Miscellaneous Features

CA Certificates

SafeNet Authentication Client 8.0 supports management of CA
certificates on token (in addition to the regular user certificates). The
CA certificates are distinguished by the attribute.

CKA_CERTIFICATE CATEGORY (introduced in the later versions of the
PKCS#11 spec). This attribute value should be 2 for CA certificate (for
user certificates it is 0).

Reference | 47

Use this attribute in templates of object search or creation.

Private Data Caching

Since the tokens are relatively slow devices (in comparison to the
desktop operations), the SafeNet Authentication Client uses data
caching to improve the performance. The caching of the private data
(private objects) is configurable per token by using the special
hardware feature object ETCKH_PRIVATE_CACHING. By default the
private data caching is enabled. RSA private keys do not leave the
hardware token (are not cached) regardless of the token settings.

Reference

Common Information

All system-specific definitions (such as structure packing and
pointers) are done according to PKCS#11 H-files on the same
platform.

Constants

ETCKF_PROPERTY_ THREAD

This constant is used solely in flags of ETC_SetProperty function.
The application should pass this flag if the newly set property value
should apply only to the subsequent calls done from the same thread
(by default it will apply to the subsequent calls done from any thread
of the process).

ETCKO_SHADOW_ PRIVATE KEY

This class is used instead of CKO_PRIVATE_KEY when looking for
RSA private key objects without being logged on.

ETCKA_OWNER

This attribute (CK_USER_TYPE) is part of some of the feature objects
(ETCKH PIN POLICY, ETCKH_PRIVATE CACHING and ETCKH 2NDAUTH)
It defines who is able to modify the object (assuming that

ckA MODIFIABLE is TRUE). It may have either value CKU_USER or
CKU_s0. If CKA MODIFIABLE is FALSE, the corresponding object cannot
be changed regardless to ETCKA_OWNER value. This attribute may be set
only during object creation (that is, during token initialization process
since it relates to hardware feature objects).

ETCKA 2NDAUTH PIN

This attribute may be passed for newly created keys with secondary
authentication (assumes CKA_ALWAYS AUTHENTICATE to be TRUE). If
not passed, the SafeNet Authentication Client will pop-up the
window asking for the password.

ETCKA_OTP_DURATION (CK_ULONG)

This is vendor-specific attribute of the OTP key object, defining the
duration (in seconds) of the OTP value representation by the token. It
makes sense only for hardware tokens. If not passed during object
creation, it will have the default value set by the SafeNet
Authentication Client. Depending of ETCKA OTP_MAY SET DURATION
may or may not be modified later by C_SetAttributeValue
function (the change will require CKU_USER to be logged on).

ETCKA_OTP_MAY SET DURATION (CK_BBOOL)

This is vendor-specific attribute of the OTP key object defines whether
the value of ETCKA_OTP_DURATION may be changed by
C_SetAttributeValue.

These flags define possible PIN policy issues. They are reported in the
ulDeviceError field of the structure returned by the
C_GetSessionInfo function. This function should be called just after
functions involving PIN policy (such as C_Login, C_SetPIN or

ETC TokenIOCTL with ETCK IOCTL PIN EVALUATE). Some may return
only from particular functions. More than one flag may be set.

®m ETCKF_PIN MIN LEN - the newly supplied PIN is too short.

B ETCKF_PIN MIX CHARS - the newly supplied PIN does not meet
mixed-characters criteria.

Reference | 49

m ETCKF_PIN MAX AGE - the current PIN should be changed since it
is expired.

B ETCKF_PIN MIN_AGE - the current PIN cannot be changed since the
minimally required number of days since the last PIN change
didn't pass yet.

®m ETCKF_PIN WARN PERIOD - the current PIN will be expired soon
(i.e. it is not expired yet, but within the 'warning' period).

B ETCKF_PIN HISTORY - the newly supplied PIN cannot be accepted
since it repeats one of the lastly used PIN values.

m ETCKF_PIN MUST BE CHANGED - the current PIN is enforced (by
SO) to be changed.

Data Types

typedef CK _ULONG ETCK TRACKER HANDLE;

typedef ETCK TRACKER HANDLE CK PTR

ETCK TRACKER HANDLE . PTR;

The ETCK_TRACKER HANDLE represents the tracker data type. The
tracker is created by the function ETC_CreateTracker and a pointer to
it may be passed to C_WaitForSlotEvent. The advantage of the
tracker is that it may be destroyed (effectively canceling the wait
process) by the function ETC_DestroyTracker while the regular
C_WaitForSlotEvent may be cancelled only by issuing C_Finalize
call.

50

typedef struct tag ETCK FUNCTION LIST EX

{

CK VERSION

version */

unsigned short

CK_ETC GetFunctionListEx
CK_ETC DeviceIOCTL

CK _ETC TokenIOCTL

CK_ETC CreateTracker
CK_ETC DestroyTracker
CK_ETC BeginTransaction
CK_ETC _EndTransaction

CK ETC GetProperty

CK ETC SetProperty

version;

flags;

ETC GetFunctionListEx;
ETC DeviceIOCTL;

ETC TokenIOCTL;

ETC CreateTracker;

ETC DestroyTracker;
ETC BeginTransaction;
ETC EndTransaction;
ETC GetProperty;

ETC SetProperty;

/* Cryptoki extension

CK_ETC CreateVirtualSession
CK_VOID PTR
CK_ETC_SingleLogonGetPin

ETC CreateVirtualSession;
pReserved;
ETC SingleLogonGetPin;

CK_ETC InitTokenInit
CK_ETC InitTokenFinal
CK_ETC InitPIN

CK_ETC UnlockGetChallenge
CK_ETC UnlockComplete

ETC InitTokenInit;

ETC InitTokenFinal;

ETC InitPIN;

ETC UnlockGetChallenge;
ETC UnlockComplete;

} CK _FUNCTION LIST EX ;

typedef ETCK FUNCTION LIST EX CK PTR
ETCK FUNCTION LIST EX PTR;

typedef ETCK FUNCTION LIST EX PTR CK PIR
ETCK FUNCTION LIST EX PTR PTR;

This structure is used to reach addresses of the vendor-specific
PKCS#11 Extension functions. It is returned by the function
ETC_GetFunctionListEx function. The structure contains the
following fields:

m Version - Version of the structure. Future versions of the structure
may contain more functions. Currently returned version is 1.0.

m Flags - currently 0, reserved for future use.

m All other fields are pointers to the corresponding functions.

Objects

The SafeNet Authentication Client introduces several hardware
feature objects covered in this chapter.

Reference | 51

Token Feature Object (ETCKH_TOKEN_OBJECT)

The ETCKH_TOKEN_OBJECT is used to obtain detailed information about
token capabilities (that is not covered in standard information
returned by the C_GetTokenInfo function) and for defining the
settings of the newly initialized token.

Attribute

Type

Meaning

CKA_CLASS

CK_OBJECT_CLASS

CKO_HW_FEATURE

CKA_HW_FEATURE_TY
PE

CK_HW_FEATURE_TY
PE

ETCKH_TOKEN_OBJECT

CKA_LABEL

CK_UTF8CHAR_PTR

Token label

ETCKA_PRODUCT_NAM
E

CK_UTF8CHAR_PTR

Token product name.

ETCKA_MODEL

CK_UTF8CHAR_PTR

Token model

ETCKA_PRODUCTION_
DATE

CK_DATE

Token production date

ETCKA_CASE_MODEL CK_ULONG Token case model

ETCKA_CARD_TYPE CK_ULONG Token card type

ETCKA_CARD_VERSIO | CK_ULONG CK_VERSION

N

ETCKA_RETRY_USER CK_ULONG Current retry counter for user PIN

ETCKA_RETRY_SO CK_ULONG Current retry counter for SO PIN

ETCKA_RETRY_USER_ | CK_ULONG Maximal retry counter for user PIN

MAX

ETCKA_RETRY_SO_MA | CK_ULONG Maximal retry counter for SO PIN

X

ETCKA_HAS_LCD CK_BBOOL TRUE if token has LCD (i.e. may be used for
off-line OTP computation)

ETCKA_HAS_SO CK_BBOOL TRUE if SO may be logged in for this token

(i.e. it has been initialized with SO PIN)

52

Attribute Type Meaning

ETCKA_FIPS CK_BBOOL TRUE if token is initialized to be FIPS-
compliant

ETCKA_FIPS_SUPPORT | CK_BBOOL TRUE if token can be initialized as FIPS-

ED compliant

ETCKA_INIT_PIN_REQ CK_BBOOL TRUE if authentication (either user or SO) is
needed to re initialize the token.

ETCKA_RSA_2048 CK_BBOOL TRUE if token supports 2048-bit RSA keys

ETCKA_RSA_2048_SUP | CK_BBOOL TRUE if token may be initialized with 2048-bit

PORTED RSA keys support

ETCKA_HMAC_SHA1 CK_BBOOL TRUE if token supports HMAC-SHA1

ETCKA_HMAC_SHA1_S | CK_BBOOL TRUE if token may be initialized with HMAC-

UPPORTED SHA1 support

ETCKA_MAY_INIT CK_BBOOL TRUE if the token may be re initialized with
SafeNet Authentication Client

ETCKA_MASS_STORAG | CK_BBOOL TRUE if the token has built-in mass-storage

E_PRESENT device

ETCKA_ONE_FACTOR CK_BBOOL TRUE if the token is initialized as one-factor
authentication device

ETCKA_RSA_AREA_SIZ | CK_ULONG Amount of bytes reserved to store RSA keys

E

ETCKA_FORMAT_VERSI | CK_ULONG Defines the token format version

ON

ETCKA_USER_PIN_AGE | CK_ULONG User PIN age (in days), i.e. how long ago the

user PIN has been changed.

The attribute CKA_LABEL contains the token label (the same one as is
returned by the C_GetTokenInfo function) in the form of null-
terminated CK_UTF8CHAR string. This is the only attribute that can
be changed by using C_SetAttributeValue function. It requires

CKU_USER to be logged on.

The attribute ETCKA_PRODUCT NAME represents the token product

name (such as "eToken NG-OTP).

Reference | 53

The attribute ETCKA_ MODEL is a prmtable string representing the exact
token model (hardware/firmware version etc.). It is used solely for
support purposes. The following constants represent supported
values of the ETCKA_CASE_MODEL attribute of the ETCKH_TOKEN object.

m ETCK _CASE NONE - the case model is not relevant. This value may
be returned for the SafeNet eToken Virtual or for the etoken
smartcard.

B ETCK CASE_CLASSIC - the classic case model of eToken Pro.
B ETCK CASE NGl, ETCK CASE NG2 - eToken NG-OTP
® ETCK _CASE NG2_NOLCD - eToken NG-FLASH

The attribute ETCKA_PRODUCTION DATE contains the date of token
production. It is available only for particular token models. Whenever
it is not available, zero bytes will be returned for this attribute.

The attribute ETCKA_CASE_MODEL may be used to associate the token
with particular icon in the application (different tokens may have
different views).

The attribute ETCKA_CARD_TYPE encodes the smartcard type used in
the particular token model (listed in the Constants section). The
following constants represent supported values of the
ETCKA_CARD_TYPE:

B ETCK_CARD NONE - the token has no smartcard (it may be
returned, for instance, for SafeNet eToken Virtual).

m ETCK _CARD_OS - the token contains Siemens CardOS smartcard.

The attribute ETCKA_RSA SIZE represents the amount of memory
reserved during token initialization for RSA keys. If this is irrelevant
for certain tokens (that is, the storage should not be specially reserved
for RSA keys), the returned value may be CK_EFFECTIVELY INFINITE
Or CK_UNAVAILABLE INFORMATION.

The attribute ETCKA_FORMAT VERSION defines the version of the token
format in use. The valid values may vary between token models. The
format version defines backward compatibility and ability to support
such or other features.

The following constants represent supported values of the
ETCKA FORMAT VERSION attribute for tokens using CardOS smartcard
(when ETCKA CARD_TYPE is equal to ETCK_CARD_OS).

M ETCK _FORMAT VERSION LEGACY - the format version compatible
with prior versions of eToken PKI Client.

54

B ETCK_FORMAT VERSION 4 0 - the format version supported since
eToken PKI Client 4.0.

B ETCK_FORMAT VERSION_5 0 - for Java Cards. Introduced in PKI
CLient 4.5.

The token object is create during token initialization process and
cannot be changed afterwards (except for the CKA_LABEL attribute).
Only a subset of attributes may be passed during token initialization.

Reference | 55

PIN Policy Feature Object

Attribute

Type

Meaning

CKA_CLASS

CK_OBJECT_CLASS

CKO_HW_FEATURE

CKA_HW_FEATURE_TY
PE

CK_HW_FEATURE_TYP
E

ETCKH_PIN_POLICY

CKA_MODIFIABLE

CK_BBOOL

TRUE if the object can be changed

ETCKA_OWNER

CK_USER_TYPE

The required logon type for changing the
object

ETCKA_PIN_POLICY_TY | CK_ULONG PIN Policy type

PE

ETCKA_PIN_MIN_LEN CK_ULONG Minimal PIN length

ETCKA_PIN_MIN_AGE CK_ULONG Minimal amount of days after that should
pass since PIN change until it will be
allowed to change it again by using
C_SetPIN function

ETCKA_PIN_MAX_AGE | CK_ULONG PIN expiration period (in days)

ETCKA_PIN_WARN_PE | CK_ULONG PIN change warning period (in days)

RIOD

ETCKA_PIN_HISTORY_ | CK_ULONG PIN history size

SIZE

ETCKA_PIN_PROXY CK_BBOOL TRUE if no real PIN policy information is
stored on the token

ETCKA_RETRY_USER_ | CK_ULONG Maximal retry counter for user PIN

MAX

ETCKA_PIN_MAX_REPE | CK_ULONG Maximum number of characters that can

ATED be repeated in sequence.

ETCKA_PIN_NUMBERS | CK_ULONG Determines if numbers are permitted,

mandatory or forbidden in the PIN

56

Attribute Type Meaning

ETCKA_PIN_UPPER_CA | CK_ULONG Determines if uppercase letters are

SE permitted, mandatory or forbidden in the
PIN

ETCKA_PIN_LOWER_C | CK_ULONG Determines if lowercase letters are

ASE permitted, mandatory or forbidden in the
PIN

ETCKA_PIN_SPECIAL CK_ULONG Determines if special characters are

permitted, mandatory or forbidden in the
PIN

The ETCKH_PIN_ POLICY object is used to manage the user PIN policy
of the token.

The attribute ETCKA_PIN POLICY TYPE defines the supported
attributes and behavior of the PIN policy. It will allow different PIN
policy schemes to be supported in the future. The only currently
supported value is ETCKPT_GENERAL PIN POLICY. This attribute
cannot be changed after object creation.

The attribute ETCKA_PIN MIX CHARS (if set to TRUE) means that from
the following categories of characters (English uppercase letters,
English lowercase letters, digits, and all the rest) at least 3 should be
presented in the PIN.

The attribute ETCKA_PIN WARN PERIOD is a recommendation for the
applications: how many days before real password expiration the user
should be warned.

The attribute ETCKA_PIN HISTORY SIZE defines how many old PIN
values should be prevented from using for the new PIN. The token
may have an upper restriction for this attribute since it is storage-
consuming.

The attribute ETCKA_PIN PROXY is set to TRUE if during token
initialization the PIN policy object has not been created (that is no PIN
policy settings are stored on token). In this case the token will behave
according to the per-machine settings of the SafeNet Authentication
Client. The PIN policy hardware feature object is still returned to the
application to simplify the application programming. This attribute
cannot be changed after token initialization.

Reference | 57

The attributes ETCKA PIN NUMBERS, ETCKA PIN UPPER CASE,
ETCKA_ PIN LOWER CASE - and | ETCKA PIN . SPECIAL enable
additional optlons when settlng the manual complexity
requirements in SafeNet Authentication Client. These
attributes support the following values:

ETCK_PIN DONTCARE (O-default) - allows usage of the characters
determined by the attribute

ETCK_PIN FORBIDDEN (1) - prohibits usage of the characters
determined by the attribute

ETCK_PIN ENFORCE (2) - forces usage of the characters determined by
the attribute

Challenge-Response Unlocking Capability Feature Object

The ETCKH_SO_UNLOCK object represents the challenge-response
unlocking capability of the token (see
ETC_UnlockGetChallenge/ETC_UnlockComplete functions). If such
an object is not found, the token's PIN cannot be unlocked by using
challenge-response even in presence of SO PIN. It is not enough to
know the SO PIN on the server side to perform the cryptographic
response computation. The application should also how to convert the
SO PIN into the cryptographic key. It may be PKCS#5 or PKCS#12 or
any other password conversion scheme. ETCKH_SO_UNLOCK describes
the mechanism used by particular token and its parameters.

Attribute Type Meaning

CKA_CLASS CK_OBJECT_CLASS CKO_HW_FEATURE
CKA_HW_FEATURE_TY | CK_HW_FEATURE_TYP | ETCKH_SO_UNLOCK
PE E

ETCKA_PBA_MECHANI | CK_MECHANISM_TYPE | Mechanism of password
SM derivation
ETCKA_PBA_ITERATIO CK_ULONG Iteration counter

N

ETCKA_PBA_SALT Byte array Salt value

58

The attribute ETCKA_PBA MECHANISM represents the cryptographic
mechanism used for derivation of the cryptographic key from the
password. All tokens supporting challenge-response are currently
using the proprietary mechanism ETCKM_PBA LEGACY. No additional
parameters are needed for this mechanism.

The attributes ETCKA PBA_ITERATION and ETCKA PBA SALT are
reserved for future use. For PKCS#5 and PKCS#12 based password
derivation they would represent the parameters of mechanism to be
used. For ETCKM_PBA LEGACY they have no sense.

Private Data Caching Feature Object

The ETCKH_PRIVATE_CACHING object defines the rules applied to the
caching of the private data coming from the token by the SafeNet

Authentication Client.

Attribute

Type

Meaning

CKA_CLASS

CK_OBJECT_CLASS

CKO_HW_FEATURE

CKA_HW_FEATURE_TYP
E

CK_HW_FEATURE_TYPE

ETCKH_PRIVATE_CACHIN
G

CKA_MODIFIABLE

CK_BBOOL

TRUE if the object can be
changed

ETCKA_OWNER

CK_USER_TYPE

The required logon type for
changing the object

ETCKA_CACHE_PRIVATE

CK_ULONG

Caching policy

The ETCKA_CACHE_PRIVATE may have the following values:

B ETCK_CACHE OFF - the caching of private data is disabled.

Reference | 59

m ETCK CACHE_LOGIN - the caching of private data is enabled as long
as the user is logged on.

B ETCK_CACHE_ON - the private data caching is enabled. The data will
be kept in the cache (but not available to application) even when
user is not logged on. This is the default behavior.

Note:
Regardless of the private data caching mode for hardware tokens, the
RSA private keys never leave the token.

Secondary Authentication Policy Feature Object

The ETCKH_2AUTH object represents the secondary authentication

settings of the token.

Attribute Type Meaning

CKA_CLASS CK_OBJECT_CLASS CKO_HW_FEATURE

CKA_HW_FEATURE_TYP | CK_HW_FEATURE_TYPE | ETCKH_2AUTH

E

CKA_MODIFIABLE CK_BBOOL TRUE if the object can be
changed

ETCKA_OWNER CK_USER_TYPE The required logon type for
changing the object

ETCKA_2NDAUTH_CREA | CK_ULONG Secondary authentication

TE policy

The attribute ETCKA _2NDAUTH_CREATE defines how RSA private keys
are created. It may have one of the following values:

B ETCK _2NDAUTH_ PROMPT NEVER (default): the newly created RSA
private keys will be regular private objects (that is, they will not be
protected with an additional password). The
CKA ALWAYS_ AUTHENTICATE attribute will be ignored.

60

B ETCK _2NDAUTH PROMPT CONDITIONAL - the newly create RSA
private keys is protected with secondary authentication only if the
CKA ALWAYS_ AUTHENTICATE attribute has been set to TRUE during
the object creation. If the user didn't supply the password, the
window will appear. Cancelling the operation creates the RSA
private key with CKA_ ALWAYS AUTHENTICATE equal to FALSE.

B ETCK _2NDAUTH_PROMPT ALWAYS behaves similarly to ETCK
_2NDAUTH PROMPT CONDITIONAL except that the Ul will appear
regardless of the initial value of the CKA ALWAYS AUTHENTICATE
attribute.

B ETCK _2NDAUTH_ PROMPT mandatory behaves similarly to ETCK
_2NDAUTH PROMPT ALWAYS, except that the creation of keys not
protected with the secondary authentication is prohibited.
Cancelling of operation by the user will finish the operation with
the failure.

Functions

ETC_GetFunctionListEx

CK_DECLARE_FUNCTION (CK RV, ETC GetFunctionListEx)
(

ETCK _FUNCTION LIST EX PTR PTR ppFunctionListEx /* receives
pointer to extention functions list */

)

ETC_GetFunctionListEx obtains a pointer to the data structure
containing pointers to all PKCS#11 Extensions functions.
ppFunctionListEx points to a value which will receive a pointer to
the library's ETCK_FUNCTION LIST structure, which in turn contains
function pointers for all the PKCS#11 Extensions routines in the
library. The pointer thus obtains may points into memory which is
owned by the SafeNet Authentication Client, and which may or may
not be writable. No attempt should be made to write to this memory.

Reference | 61

ETC_DevicelOCTL

CK DECLARE FUNCTION (CK RV, ETC DeviceIOCTL)
(

CK_SLOT_ID slotlId,

CK _ULONG code,

CK_VOID PTR pInput,

CK ULONG ulInputLength,

CK VOID PTR pOutput,

CK ULONG PTR pulOutputLength
)

ETC_DeviceIOCTL is used to perform various slot-level operations not
covered by the PKCS#11 spec. The main difference between
ETC_DeviceIOCTL and ETC_TokenIOCTL is that ETC_DeviceIOCTL is
directed to the entire slot and in most of cases does not even assume a
ready-to-work token to be plugged.

ETC_DeviceIOCTL directs the command with function code to the
slotID. The meaning of the input parameter pInput of ulInputLength
and the output buffer poutput of pulOutputLength depends on
particular operation to be performed.

ETCK_IODEV_SOFTWARE_TOKEN_PLUGIN

ETCK_IODEV_SOFTWARE TOKEN PLUGIN connects the SafeNet eToken
Virtual file to the free token slot. The SafeNet eToken Virtual may be
connected only to the soft token slot which has no token connected to
it. The pInput should point to the SafeNet eToken Virtual file name
(UTF-8 encoded).

Note the following:

m The corresponding file should exist and keep a valid SafeNet
eToken Virtual. SafeNet Authentication Client does not check the
file presence and correctness, but future versions of SafeNet
Authentication Client may do this. Also, various applications
(such as SafeNet Authentication Client) may automatically
unplug the SafeNet eToken Virtual if the corresponding file is
unavailable or corrupted.

m The file should be achievable (for the same reasons). It is therefore
not recommended to plug-in the SafeNet eToken Virtual located
on the removable storage (or network) device.

m The file should be available for read/write access; otherwise the
subsequent operations with the SafeNet eToken Virtual may fail.

62

m All applications (including one who issued the ETC_DeviceIOCTL)
will get notification about the slot event (via
C_WaitForSlotEvent).

®m The token will remained plugged in as long as it will not be
plugged out by some application.

ETCK_IODEV_SOFTWARE_TOKEN_PLUGOUT

ETCK_IODEV_SOFTWARE TOKEN PLUGOUT disconnects the SafeNet
eToken Virtual from the slot. No input/output parameters are defined
for this function. The slotID is the only necessary information. Upon
plug out, all applications (including the one that issued the
ETC_DeviceIOCTL) will get notification about the slot event (via
C_WaitForSlotEvent). The function does not remove the file
physically, it just disconnects it from the slot.

ETCK_IODEV_FULL_NAME

ETCK_IODEV_FULL_NAME returns the full name for particular slot. It is

used to overcome PKCS#11 restriction of 64 bytes for slot description.
The pOutput is buffer where the name will be returned. The function
will return the following:

m For smartcard reader - full reader name.

m For software slot with connected SafeNet eToken Virtual - the
filename of the SafeNet eToken Virtual.

ETCK_IODEV_SOFTWARE_GET_EMULATE

ETCK_IODEV_SOFTWARE GET EMULATE checks whether the software
slot is in the smartcard reader emulation mode. Only one slot (with
SafeNet eToken virtual connected) may be in such mode in any period
of time. The pOutput is considered as ck_BBooL PTR. TRUE or FALSE
will be returned, depending on the slot state.

The following constants represent the currently supported slot IOCTL
codes. See description of ETC_DeviceIOCTL function for details of use.

Reference | 63

ETCK_IODEV_SOFTWARE_SET_EMULATE

ETCK_IODEV_SOFTWARE SET EMULATE is used to turn the smartcard
reader emulation mode on or off for the particular slot. The pInput is
considered as CK_BBOOL_PTR, pointing to the input parameter. If TRUE
is passed, the emulation will be turned on. If FALSE is passed, the
emulation will be turned off.

ETCK_IODEV_CHECK_NAME

ETCK_IODEV_CHECK NAME is used to check whether the particular name
is associated with the passed slotID. The pInput is considered as
CK_UTF8CHAR_PTR pointing to the name, and pOutput is CK_BBOOL_PTR
pointing to the result to be returned. Usually, the function will return
TRUE if the passed name is the same one as returned by
ETCK_IODEV_FULL NAME. The only exception is that software slot in
emulation mode will also return TRUE if the name of associated
smartcard reader is passed.

ETC_TokenlOCTL

CK_DECLARE FUNCTION (CK RV, ETC TokenIOCTL)
(

CK SESSION HANDLE hSession,

CK OBJECT HANDLE hObject,

CK_ULONG code,

CK_VOID PTR pInput,

CK ULONG ulInputLength,

CK VOID PTR pOutput,

CK ULONG PTR pulOutputLength
)

ETC_TokenIOCTL is used to perform various operations that are not
covered by the PKCS#11 spec. The hSession and hobject define the
session and object in use and the code defines particular operation to
be performed. The meaning of the input parameter pInput of
ulInputLength and the output buffer poutput of puloutputLength
depends on particular operation to be performed.

ETCK_IOCTL_PIN_EVALUATE

ETCK_IOCTL PIN EVALUATE is used to check whether the PIN meets
the PIN policy requirements, without actually changing the PIN.

64

The parameters are:

hSession - session opened with the requested token.

hObject -isignored by the SafeNet Authentication Client 8.0. It is
recommended however to pass the handle to the PIN policy
hardware feature token (for forward compatibility).

code - ETCK_IOCTL PIN_EVALUATE.

pInput, ulInputLength - the new PIN value to be evaluated. If
NULL is passed, the function will check only if the PIN change is
already allowed (according to the minimal PIN age setting).

pOutput, pulOutputLength - the output parameter is of type
CK_ULONG. It returns some estimation about the passed PIN
(according to PIN policy) as the number between 0 and 100. The
application may use this number for user interface purposes. No
value of this parameter should be understood as acceptance or
rejection of the passed PIN value. If pInput is NULL, pOutput
should be NULL too.

The function returns CKR_OK if the PIN is acceptable, or alternatively,
CKR_INVALID PIN or CKR PIN LEN RANGE (any other code is
considered as an error of the function). More information may be
received by subsequent call to the C_GetSessionInfo function.

Note the following:

The function may not check whether the PIN is equivalent to one
of the old PIN values. So, even if the function succeeded, the
subsequent C_SetPIN may fail due to the PIN history.

If the application intends to use ETC_UnlockComplete rather than
C_SetPIN, the operation ignores the minimal password age. In
this case, even in the case of CKR_INVALID_PIN being returned, the
application should check the reason for failure. If minimal PIN
age is the only failure, the ETC_UnlockComplete will still succeed.

ETC_CreateTracker

CK_DECLARE FUNCTION (CK RV, ETC CreateTracker)

(

ETCK TRACKER HANDLE PTR pTracker,
CK VOID PTR param
) 4

Reference | 65

ETC_CreateTracker creates the tracker object that may later be used
in the C_WaitForSlotEvent function. pTracker is the pointer for the
tracker handle to be returned, param is reserved for future use and
must be NULL. The reason to use trackers is that the tracker may be
destroyed later (effectively breaking the wait and unlocking the
waiting thread) without stopping the entire application activity with
C_Finalize.

ETC_DestroyTracker

CK _DECLARE FUNCTION (CK RV, ETC DestroyTracker)

(
ETCK TRACKER HANDLE hTracker

)

ETC_DestroyTracker destroys hTracker previously created by the
ETC_CreateTracker function.

ETC_BeginTransaction

CK_DECLARE FUNCTION (CK RV, ETC BeginTransaction)
(

CK_SESSION HANDLE hSession
)i

66

ETC_BeginTransaction locks the token for using from other processes
or threads until ETC_EndTransaction is performed. Locking the token
ensures that no other application (or thread) will work with the token
at that time. Using transactions for long series of operations with the
token allows the application to ensure consistency and improve
performance.

Note:

m Locking the token means only preventing other applications from
using it. There is no database-like transaction (If the application
crashes before finishing a transaction, there is no rollback).

m If the application finishes without ending the transaction, it will be
ended automatically. However, if the thread finishes without releasing
the transaction, the behavior is unpredictable: the transaction may be
ended immediately or only after finishing the application. So, if
another thread of the same application tries to access the token, the
deadlock is possible.

m The transaction with some token may block even 'innocent'
operations working with multiple slots (such as C_GetSlotList).

®m Do not keep open a transaction longer than necessary. In particular,
do not perform any user interaction during opened transaction.

ETC_EndTransaction

CK_DECLARE FUNCTION (CK RV, ETC EndTransaction)

(
CK_SESSION HANDLE hSession

)

ETC_EndTransaction ends the transaction opened by the
ETC_BeginTransaction call.

ETC_GetProperty

CK _DECLARE FUNCTION (CK RV, ETC GetProperty)
(

CK_UTF8CHAR PTR name,

CK_VOID PTR pBuffer,

CK_ULONG_PTR pulSize,

CK_VOID PTR pReserved /* NULL */
)i

Reference | 67

ETC_GetProperty returns the current setting of particular property.
pReserved is reserved for future use and must be NULL.

ETC_SetProperty

CK_DECLARE_FUNCTION (CK RV, ETC_SetProperty)

(
CK UTF8CHAR PTR name,

CK_VOID PTR pBuffer,

CK _ULONG ulSize,

CK ULONG flags,

CK_VOID PTR pReserved /* NULL */
)7

ETC_SetProperty modifies the property setting. Only some properties
may be set in the by application. The change affects only current
process. The only currently defined flag is ETCKF_PROPERTY THREAD.
When passed, the change will affect only the particular thread;
otherwise it will affect the entire process. Passing NULL value will
effectively reset the property value to its initial value (that taken place
on application launch).

pReserved is reserved for future use and must be NULL.

ETC_CreateVirtualSession

CK_DECLARE FUNCTION (CK RV, ETC CreateVirtualSession)

(
CK_SESSION HANDLE PTR phSession

)

ETC_CreateVirtualSession creates the virtual session, that is, the
session that is not associated with any token. It is useful for server-side
operations, such as:

m Cryptographic operations based on any keys known to the
application.

m OTP verification.

m Computation response for the user token unlocking.

The application may call ETC_CreateVirtualSession many times, all
created sessions are independent.

68 |

ETC_SingleLogonGetPin

CK_DECLARE FUNCTION (CK RV, ETC_SingleLogonGetPin)
(

CK_SESSION HANDLE hSession,

CK_CHAR PTR pPin,

CK _ULONG_PTR ulPinLen
)

ETC_SingleLogonGetPin returns a pseudo-PIN value that may be
later used in a C_Login call. If the SafeNet Authentication Client is
currently not in the Single Login Mode the function will fail. If the
user PIN was not entered yet, the function will fail.

The data returned by the ETC_SingleLogonGetPin is not related in
any way to the user PIN value. It is just some data that will be later
understood by C_Login as an attempt to reuse PIN value (if already
known to the SafeNet Authentication Client in the current user
session).

ETC_InitTokenlInit

CK_DECLARE FUNCTION (CK RV, ETC InitTokenInit)
(

CK SLOT ID slotID,

CK UTF8CHAR PTR pPin,

CK ULONG ulPinLen,

CK ULONG ulRetryCounter,
CK UTF8CHAR PTR pLabel,

CK_SESSION HANDLE PTR phSession
)i

ETC_InitTokenInit opens the initialization session with the token
located in the slotId and returns in phSession the handle to this
session. The initialization session will later be used for creation of
hardware feature objects. It is closed by ETC_InitTokenFinal or by
C_CloseSession. The parameters pPin and ulPinLen represent the
SO PIN. NULL should be passed if the token will have no SO PIN.
ulRetryCounter is the retry counter for the SO PIN. If zero is passed,
the SafeNet Authentication Client will use the default value.

Reference | 69

ETC_InitTokenFinal

CK_DECLARE FUNCTION (CK RV, ETC InitTokenFinal)

(
CK_SESSION HANDLE hSession

)

ETC_InitTokenFinal performs the actual token initialization and
closes the initialization session opened by ETC_InitTokenInit.

ETC_InitPIN

CK_DECLARE_FUNCTION(CK_RV, ETC_InitPIN)
(

CK SESSION HANDLE hSession,

CK UTF8CHAR PTR pPin,

CK ULONG ulPinLen,
CK_ULONG ulRetryCounter,
CK_BBOOL toBeChanged

)

ETC_InitPIN initializes the user PIN. It extends the functionality of
the standard function ¢_1nitPIN. The function should be called when
SO is logged in or during the initialization session opened by
ETC_InitTokenInit.

If the function is called during the initialization session,
ulRetryCounter defines the retry counter for the user password. If
zero is passed, the SafeNet Authentication Client will use the default
value. If the function is called after token initialization, it is
recommended to pass zero (so that the retry counter will not be
changed), since not all token models may be able to change retry
counter without token re-initialization.

The parameter toBeChanged allows to enforce the user to change the
PIN upon the first login.

ETC_UnlockGetChallenge

CK_DECLARE_ FUNCTION (CK RV, ETC UnlockGetChallenge)
(

CK_SESSION HANDLE hSession,

CK VOID PTR pChallenge,

CK ULONG_PTR pulChallengelen
)7

70

ETC_UnlockChallenge returns in pChallenge buffer the
cryptographic challenge. The application should compute response
and call with it the function ETC_UnlockComplete in order to unlock
the user PIN.

ETC_UnlockComplete;

CK DECLARE FUNCTION (CK RV, ETC UnlockComplete)

(
CK SESSION HANDLE hSession,

CK_VOID PTR pResponse,

CK ULONG ulResponse,

CK UTFSCHAR PTR pPin,

CK ULONG ulPinLen,
CK_ULONG ulRetryCounter,
CK_BBOOL toBeChanged

)

ETC_UnlockComplete completes the process of user PIN unlocking.
pResponse should be the cryptographic response computed by
application for the challenge returned from the function
ETC_UnlockChallenge. The newly passed user PIN (pPin) should
meet the PIN Policy settings of the token. It is recommended that the
ulRetryCounter will be the same one that the password had before or
zero (in case of zero the SafeNet Authentication Client keeps the old
counter). Other values may be or may not be supported by the
particular token. The parameter toBeChanged may be used to force the
user to change the PIN upon the first login.

Mechanisms

ETCKM_PBA_LEGACY

This is vendor-specific mechanism of key derivation from the PIN. It is
used to convert the SO PIN to the Triple-DES MAC key. The PIN value
serves as the only mechanism parameter. In other words, the
CK_MECHANISM structure for key generation from the SO PIN should be
filled as follows for this mechanism:

® mechanism - ETCKM_PBA LEGACY.

Reference | 71

B pParameter - pointer to the SO PIN
B ulParameterLen - length of the SO PIN

Properties

The SafeNet Authentication Client SDK provides Set and Get property
functions. The properties are defined by the SafeNet Authentication
Client module.

In versions earlier than eToken PKI Client 5.0, some properties did not
allow the Set function. In SafeNet Authentication Client 8.0, properties
are arranged according to a hierarchy, and the Set function is available
according to the location of the property in this hierarchy:

Policy (Machine) - requires Administrator permissions

m Policy (User) - requires Administrator permissions
m User- requires User permissions
® Machine - requires User permissions

Current User - requires User permissions

The Set function is enabled for properties that are located in the areas
accessible with User permissions.

For more information, see the Configuration Settings chapter in the
SafeNet Authentication Client Administrator’s Guide.

General

Property name Explanation

TolerantX509Attributes TolerantX509Attributes determines if the following
conditions must be met when creating a certificate:

m The certificate must be created in the DER encoded
X.509 format.

m The serial number, subject and issuer objects of the
internal certificate must match the external
attributes.

For more information see X.509 Attribute Tolerance on

page 21

72 |

Password Policy

Property name Explanation

pgMinLen Default value for ETCKA_PIN_MIN_LEN
attribute (see Password Policies)

pgMixChars Default value for ETCKA_PIN_MIX_CHARS
attribute (see Password Policies)

pgMaxAge Default value for ETCKA_PIN_MAX_AGE
attribute (see Password Policies)

pqMinAge Default value for ETCKA_PIN_MIN_AGE
attribute (see Password Policies)

pqWarnPeriod Default value for
ETCKA_PIN_WARN_PERIOD attribute (see
Password Policies)

pqHistorySize Default value for ETCKA_PIN_HISTORY_SIZE
attribute (see Password Policies)

pgNumbers Default value for ETCKA_PIN_NUMBERS
attribute

pgLowerCase Default value for ETCKA_PIN_LOWER_CASE
attribute

pqUpperCase Default value for ETCKA_PIN_UPPER_CASE
attribute

pgSpecial Default value for ETCKA_PIN_SPECIAL
attribute

pgMaxRepeated Default value for
ETCKA_PIN_MAX_REPEATED attribute

Reference | 73

Initialization

Property name

Explanation

HMAC-SHA1

Default value for ETCKA_HMAC_SHA1 attribute (see
token initialization). If not set, there is no default
value, the logic of SafeNet Authentication Client may
vary depending on the token model.

RSA-2048

Default value for ETCKA_RSA_2048 attribute (see
token initialization). If not set, there is no default
value, the logic of SafeNet Authentication Client may
vary depending on the token model.

LEGACY-FORMAT-VERSION

Default value for ETCKA_FORMAT_VERSION
attribute for CardOS-based eToken models (see
token initialization).

RSA-AREA-SIZE

Default value for ETCKA_RSA_AREA_SIZE attribute
(see token initialization). If not set, there is no default
value, the logic of SafeNet Authentication Client may
vary depending on the token model.

74 |

Token Model Specifications

FIPS HMAC* 2048 One Factor RSA Area Size

Java Card No Builtin Controlled | Yes Not relevant

by FW
CFG block
SafeNet eToken | No Yes Yes No Set the area size
Virtual attribute to ZERO
to disable RSA
use.

eToken Pro/ Yes, with Yes, Yes Yes, with Applies to formats

eToken-NG format through format version | 0 and 4.

Card OS 4.20.B | version5 external 4 and 5 (non Set the area size

package FIPS) attribute to ZERO
to disable RSA
use.

eToken Pro/ No Yes, Yes, Yes, with Applies to formats

eToken-NG through through format version | 0and 4.

Card 0S 4.20 external external 4 and 5 Set the area size

package package attribute to ZERO
to disable RSA
use.

eToken Pro/ Yes, with No No Yes, with Applies to formats

eToken-NG format format version | 0.and 4.

Card OS 4.01 version 0 4 (non FIPS) Set the area size
(compatible attribute to ZERO
with RTE to disable RSA
3.65) use.

* OTP depends on the HMAC algorithm.

SAPI

SafelNet.

Chapter 4

This chapter describes SAPI as implemented in SafeNet
Authentication Client 8.0, differences in behavior and backward
compatibility issues.

Introduction

Common Description of SAPI

Data Types

Error Codes

SAPI Objects

Functions

Major Backward Compatibility Issues of SAPI

76 |

Introduction

SAPI (Supplementary API) was introduced in SDK 3.60 to provide
developers with access to token functionality not covered at that stage
by PKCS#11 AP, such as:

m Obtaining extended information about the version and
capabilities of a particular token device.

® Initializing of token in a more flexible manner than provided by
the c_InitToken PKCS#11 function.

m Secure unblocking of a user PIN.

® Managing the OTP (one-time password) functionality of token
devices supporting OTP.

In SafeNet Authentication Client 8.0, all this functionality is available
through PKCS#11 API (including vendor-specific extensions
described in this document). However SAPI continues to be
supported for reasons of backward compatibility. However, new
functionality will be provided only through PKCS#11. Therefore, we
recommend using PKCS#11 for future development, while using SAPI
for maintenance purposes.

Common Description of SAPI

When working with SAPI functions:

m The application may call SAPI functions in one of two ways:

¢ Statically linking 1ibeTSapi . so by using the import library
supplied with the SDK.

¢ Dynamically loading 1ibeTSapi. so by using the
LoadLibrary function and then locating API functions by
using GetProcAddress.

m The application should call the PKCS#11 c_Initialize function
prior to any usage of SAPI functions.

®m The application should not call the C_Finalize function as long as
it continues to use SAPI functions.

This section contains a brief description of the proposed SAPI
functions.

For each function, the following applies:

Common Description of SAPI | 77

m Function returns CK_RV as the return value as in all PKCS#11
functions. Several vendor specific return codes are defined by
SAPL

Note:
Error codes returned by the same function may vary between
versions of PKI Client.

m If the function operates with a particular slot, it gets either a slot
ID or session handle as a parameter. A session handle is used if it
is expected that the token must be properly initialized before the
function call.

m Whenever possible data types and structures defined in PKCS#11
are used. SAPI defines several more data types.

m Parameter template means CK_ATTRIBUTE_PTR which points to the
attributes array and CK_ULONG containing the array size. The
handling of this parameter is similar to other PKCS#11 functions.

m Although SAPI describes new object classes, this API does not
really use PKCS#11 object-related functions (such as
C_FindObjects). These object classes are used only to group the
relevant attributes, while separate API functions are used to
operate with each feature.

The API is defined in the eTSAPLh header file.

OTP Functionality

Some token devices, such as eToken NG-OTP and SafeNet eToken
Virtual, support one-time password (OTP) functionality. OTP-capable
tokens should be initialized with some OTP secret. The user may then
generate a new OTP value by pressing the button without even
connecting the token to the computer and use the token in various
password-protection schemes (certainly, proper back end support is
needed).

Generally speaking the token may be able to support in the future
multiple OTP secrets and support multiple OTP algorithms. But SAPI
supports addressing of only one OTP secret per token is supported, it
is referenced indirectly by all OTP functions.

Similarly, currently only one OTP algorithm is supported. This is an
HMAC-SHA1 based HOTP algorithm.

For more information, refer to:
http://tools.ietf.org/html/draft-mraihi-oath-hmac-otp-04

The token should be initialized with HMAC-SHA1 support to use
HOTP functionality.

The application may use:

SAPI_OTP_GetMechanismList and SAPI_OTP_GetMechanismInfo
to examine the token's OTP capabilities.

SAPI_OTP_Create to create instances of the OTP object.
SAPI_OTP Destroy to delete it (the OTP object).

SAPI_OTP_GetAttributeValue to examine attributes of the
existing OTP object.

SAPI_OTP_SetAttributeValue to change the presentation
duration of the OTP object on the token.
SAPI_OTP_Execute to perform OTP calculations on the token.

SAPI_Server OTP_Calculate to perform OTP calculations
without the token, passing the OTP secret as a parameter. This
function is used by the server application to validate user
authentication.

Miscellaneous Functionality

Supplementary API provides application developers with additional
functionality that may be usable for some applications.

The application may use:

SAPI_GetLibraryInfo to obtain information about the library
version.

SAPI_GetSlotInfo to obtain information about the particular slot.

SAPI_GetTokenInfo to obtain full information about the token
model, version and capability. The function returns the required
information in the template of attributes that describes "token
object".

SAPI_InitToken to initialize the token. The function gets the
initialization parameters in the template of attributes that describe
"token object” (many of these attributes are common with the
SAPI_GetTokenInfo function).

Data Types| 79

®m SAPI_FindTokens Or SAPI_LocateToken to find the needed token
between all tokens currently inserted in the computer.

B SAPT UnblockPIN, SAPI UnblockPINExand
SAPI_Server_ Unblock to unblock the user PIN remotely. Unlike
the c InitPIN function of PKCS#11, it allows unblocking of the
user PIN without the Security Offlcer PIN (SO PIN) being known
by the client application by using a challenge-response
mechanism. The function SAPI_UnblockPIN is run on the client
machine (where the token is inserted), while the function
SAPI_Server_Unblock cooperates on the server side, computing
the proper cryptographic response.

®m SAPI Login and SAPI_SetPIN allow applications to use Ul and
password policy mechanisms of the SafeNet Authentication
Client (something that comes automatically since PKI Client 4.0,
but not in previous versions).

Data Types

SAPI uses data types as defined in PKCS#11 and in addition defines
several more. These are described here:

CK_INIT_CALLBACK

typedef CK CALLBACK FUNCTION (CK RV, CK INIT CALLBACK)
(CK_VOID PTR pContext, CK ULONG progress) ;

This callback function is used with the SAPI_InitToken function to let
the application show its progress as percentages.

The parameters are:

B pContext - the context that has been passed to SAPI_InitToken
B progress - the formatting progress in percentage.

This function should return CKR_OK to continue the initialization or
any other return value to stop it.

80 |

CK_UNBLOCK_CALLBACK

typedef CK_CALLBACK_FUNCTION (CK_RV, CK_UNBLOCK_CALLBACK)
(CK_SESSION HANDLE hSession, CK VOID PTR pChallenge,
CK VOID PTR pResponse) ;

This callback function is for the SAPI_UnblockPIN function and is
used to complete the challenge-response calculation.

The parameters are:

B hSession - the session handle that has been passed to the
SAPI_UnblockPIN function
pChallenge - the cryptographic challenge as created by the token

pResponse - the response to the challenge

CK_UNBLOCK_CALLBACK_EX

typedef CK CALLBACK FUNCTION (CK RV, CK UNBLOCK CALLBACK EX)
(CK_VOID PTR pContext, CK VOID PTR pChallenge, CK VOID PTR
pResponse) ;

This callback function is for the SAPI_UnblockPINEx function and is
used to complete the challenge-response calculation.

The parameters are:

B pContext - application context that has been passed to the
SAPI_UnblockPIN function
pChallenge - the cryptographic challenge as created by the token
pResponse - the response to the challenge

Data Types| 81

SAPI_PIN_POLICY_INFO

typedef struct tagSAPI PIN POLICY INFO

CK_RV warning;

CK_ULONG days;

CK_ULONG warningPeriod;

CK_ULONG expiryPeriod;
}SAPI_PIN POLICY INFO;

This structure is used in function SAPI_Login to return the
information about need to change password.

CK_SAPI_OTP_MECHANISM_INFO

typedef struct tagCK SAPI OTP MECHANISM INFO
{
CK_ULONG mechanism;// CK_SAPI OTP HMAC SHAl DEC6

CK_ULONG minKeyLen;
CK ULONG maxKeyLen;
CK_ULONG OTPLen;// 6
CK_ULONG defDuration;
CK ULONG flags;

}CK_SAPI_OTP MECHANISM INFO,
*CK_SAPI_OTP_MECHANISM INFO PTR;

This structure describes information about the OTP mechanism as
returned from the function SAPI_OTP_GetMechanismInfo.

The fields of the structure are:

B mechanism- OTP mechanism (only the
CK_SAPI_OTP_HMAC_ SHAl DEC6 mechanism is currently
supported)

B minKeyLen - the minimum key length of the OTP secret
B maxKeyLen - the maximum key length of the OTP secret

B OTPLen - the size of the produced OTP value (excluding the final
zero-character)

B defDuration - the duration of the OTP presentation in seconds

B flags - this can be a combination of one or more flags that
describe the mechanism's capabilities. They can be:

82

CK_SAPI_OTP_CURRENT SUPPORTED - the token supports
retrieving the current OTP value. See
SAPI_OTP_Execute on page 109.
CK_SAPI_OTP_ZERO_SUPPORTED - the token supports
retrieving the "zero” OTP value. See SAPI_OTP_Execute
on page 109.

CK_SAPI_OTP_CUSTOM DURATION - the token supports
customization of the OTP display duration.

CK_SAPI_OTP_CTL_DURATION - the ability to change the
OTP display duration can be restricted at the time of
OTP object creation.

CK_SAPI_OTP_ BUTTON SUPPORTED - token supports the
use of an OTP button when the token is connected to
the computer.

These flags are kept for backward compatibility. In SafeNet
Authentication Client 8.0 all these flags are set.

Error Codes

Usually, SAPI functions return the standard PKCS#11 error codes. The
following table shows some of the more common error codes likely to
be returned. In addition to these, refer to the PKCS#11 documentation
for a complete list of the error codes:

http://lwww.rsasecurity.com/rsalabs/node.asp?id=2133

General PKCS#11 Error Codes

Name

Description

MPLETE

CKR_TEMPLATE_INCO | A mandatory attribute is not passed.

SISTENT

CKR_TEMPLATE_INCON | Certain passed attributes make no sense together.

EnorCodes| 83

Name

Description

CKR_ARGUMENTS_BAD

The required operation cannot be performed with the passed
parameters

CKR_USER_NOT_LOGG
ED_IN

The user is required to be logged in.

CKR_DEVICE_ERROR

An object is damaged.

eTSAPI functionality allows for certain actions that are not covered by
PKCS#11 error codes and for these actions SAPI specific codes are
required. The instances of this are limited. The following table shows
SAPI specific error codes.

SAPI Specific Error Codes

Name Description

CKR_SAPI_OBJECT_DOE | The object asked about in the operation does not exist.
S_NOT_EXIST

CKR_SAPI_OBJECT_ALR | An object already exists. This may be returned from functions
EADY_EXISTS like SAPI_BI_Create and SAPI_OTP_Create

CKR_SAPI_NOT_SUPPO | The token does not support the requested feature.
RTED_BY_TOKEN

CKR_SAPI_PIN_QUALITY | The newly supplied PIN does not meet requirements of
password policy

CKR_SAPI_PIN_DEFAULT | The default PIN must be changed. This error code will never
return in SafeNet Authentication Client 8.0 (due to changes
in the password policy mechanisms).

CKR_SAPI_PIN_EXPIRAT | The PIN is expired.
ION

CKR_SAPI_PIN_CHANGE | The PIN change is currently not allowed
_NOT_ALLOWED

CKR_SAPI_CANCELLED | The Ul operation is cancelled by user.

Note:

m The specific error codes returned by functions in the case of such or
other failure may sometimes vary between PKI Client versions.

m Due to historical reasons SAPI introduces several error codes
similar to error codes introduced in later versions of PKCS#11.

SAPI Objects | 85

SAPI Objects

As mentioned previously, SAPI does not have concept of objects as it
is introduced by PKCS#11. You cannot operate with SAPI objects by
using PKCS#11 functions. However, similar to PKCS#11, SAPI uses
templates of attributes to identify the entities it works with. They are
called 'objects' as long as we speak about SAPL

Slot Object

The slot object is used to represent the token characteristics that are
not available via the C_GetSlotInfo function.

CKA_SAPI_SLOT_NAME (CK_UTF8CHAR_PTR)

This attribute is a null terminated string. For PC/SC readers it contains
the full reader name while for SafeNet eToken Virtual contains the file
name (empty string is returned if no file is associated with the SafeNet
eToken virtual slot). See ETCK_IODEV_FULL_NAME on page 62.

CKA_SAPI_SLOT_TYPE (CK_ULONG)

This attribute contains a constant that defines the slot type thereby
distinguishing virtual slots from real slots and tokens from
smartcards.

These are the possible values:

CK_SAPI_SLOT_SC_READER - PKCS#11 slot corresponds to the real
smart card reader (For example, Athena reader).

CK_SAPI_SLOT_SC_VIRTUAL - PKCS#11 slot corresponds to the SafeNet
eToken Virtual reader (named ordinaly "AKS ifdh 0", ..1, ..2 and so
on).

CK_SAPI_SLOT_ FILE - PKCS#11 slot corresponds to the 'software’
token (that is, the binary file).

86 |

Token Object

This object is used to:

m Represent token characteristics not available via the
C_GetTokenInfo function.

m Learn whether the token has some special capabilities (like OTP).
m Perform token initialization.

Note:
Some token attributes may not be allowed during initialization, while
others are allowed only during initialization.

In SafeNet Authentication Client 8.0 most of this information is
represented via the special hardware feature object
ETCKH_TOKEN OBJECT.

CKA_SAPI_CARD_ID (CK_BYTE_PTR)

This is the smartcard's unique ID. It is unique for cards from a
particular OS vendor (in conjunction with CKA_SAPI_CARD_TYPE).
Cardless tokens (for example, SafeNet eToken Virtual) return an
empty byte array as the smartcard ID.

This is a read only attribute.

See also ETCKA_CARD_ID, in the Token Feature Object
(ETCKH_TOKEN_OBJECT) table on page 51.

CKA_SAPI_CARD_TYPE (CK_ULONG)

This distinguishes cards from different vendors with
CK_SAPI_CARD NONE meaning No Smartcard and CK_SAPI_CARD OS
meaning Siemens CardOS.

This is a read only attribute.

See also ETCKA_CARD_TYPE in the Token Feature Object
(ETCKH_TOKEN_OBJECT) table on page 51.

SAPI Objects | 87

CKA_SAPI_CARD_VERSION (CK_VERSION)

This is the OS version of the smartcard.
This is a read only attribute

See also ETCKA_CARD_VERSION in the Token Feature Object
(ETCKH_TOKEN_OBJECT) table on page 51.

CKA_SAPI_CASE_MODEL (CK_ULONG)

This refers to constants that state how the casing looks:

CK_SAPI_CASE_NONE Smartcard or SafeNet eToken Virtual

CK_SAPI_CASE CLASSIC Classic shape (eToken PRO)

CK_SAPI_CASE NG1 "NG1" shape (eToken NG-OTP)
CK_SAPI_CASE NG2 "NG2" shape (eToken NG-OTP)
ETCK_CASE NG2_NOLCD "NG2" shape (eToken NG Flash)

This is a read only attribute.

See also ETCKA_CASE_MODEL in the Token Feature Object
(ETCKH_TOKEN_OBJECT) table on page 51.

CKA_SAPI_COLOR (CK_ULONG)

This provides information on the token color where it has been burnt

in or on a smartcard. See also ETCKA_COLOR in

ETCKH_TOKEN_OBJECT. For tokens that keep no information about

token color PKI Client 4.0 sets this attribute to "Unknown"
(OxFFFFFFFF).

CKA_SAPI_FIPS (CK_BBOOL)

When used in the SAPI_GetTokenInfo function, this attribute states
whether the token is currently initialized as FIPS-compliant or not.
When passed to the SAPI_InitToken function, this attribute defines
whether the token should be initialized as FIPS-compliant or not.

See also ETCKA_FIPS in the Token Feature Object
(ETCKH_TOKEN_OBJECT) table on page 51.

CKA_SAPI_FIPS_SUPPORTED (CK_BBOOL)

This attribute states whether the token can be initialized as a FIPS
token.

This is a read only attribute.

See also ETCKA_FIPS_SUPPORTED in the Token Feature Object
(ETCKH_TOKEN_OBJECT) table on page 51.

CKA_SAPI_HAS_LCD (CK_BBOOL)

This indicates whether or not the token has an LCD display by means
of a true or false answer.

This is a read only attribute.

See also ETCKA_HAS_LCD in the Token Feature Object
(ETCKH_TOKEN_OBJECT) table on page 51.

CKA_SAPI_HAS_SO (CK_BBOOL)

This indicates whether or not the token has a Security Officer by
means of a true or false answer.

This is a read only attribute.

See also ETCKA_HAS_SO in the Token Feature Object
(ETCKH_TOKEN_OBJECT) table on page 51.

CKA_SAPI_HAS_USER (CK_BBOOL)

This attributes determines whether the token is initialized or empty.
This is a read only attribute.

SafeNet Authentication Client 8.0 returns this information also via
flag CKF_USER_PIN_ INITIALIZED in the CK_TOKEN_ INFO structure.

SAPI Objects | 89

CKA_SAPI_HMAC_SHA1 (CK_BBOOL)

When used in the SAPI_GetTokenInfo function, this attribute states
whether the token currently supports the HMAC SHA1 algorithm or
not. When passed to the SAPI_InitToken function, this attribute
defines whether you need the token to support the HMAC SHA1
algorithm.

See also ETCKA_HMAC_SHALI in the Token Feature Object
(ETCKH_TOKEN_OBJECT) table on page 51.

CKA_SAPI_HMAC_SHA1_SUPPORTED (CK_BBOOL)

This attribute states whether the token can be initialized with HMAC
SHALI algorithm support.

This is a read only attribute.

See also ETCKA_HMAC_SHA1_SUPPORTED in the Token Feature
Object (ETCKH_TOKEN_OBJECT) table on page 51.

CKA_SAPL_INIT_PIN_REQ CK_BBOOL)

This attribute states whether the CKA_SAPI_PIN CURRENT attribute is
required for token initialization.

This is a read only attribute.

CKA_SAPI_MAY_INIT(CK_BBOOL)

This attribute states whether or not it is possible to initialize the token
via SAPI_InitToken.

This is a read only attribute.

CKA_SAPI_MODEL (CK_CHAR_PTRO)

This produces a character string describing the product and includes
information on the hardware version. This information may be
displayed by an application to get a token description. This
description is not informative for user applications, but may be
helpful for support reasons including troubleshooting.

The content of this attribute may change as a result of a token FW
upgrade.

This is a read only attribute.

See also ETCKA_MODEL in the Token Feature Object
(ETCKH_TOKEN_OBJECT) table on page 51.

CKA_SAPI_NEW_KEY (CK_BYTE_PTR)

This attribute defines the secret key that will be set on the token for
further initialization. Absence of this attribute means that the default
key will be used. This attribute may be used only when calling

SAPI_ InitToken.

CKA_SAPI_OLD_KEY (CK_BYTE_PTR)

This attribute defines the secret key used for token initialization.
Absence of this attribute means that the default key will be used. This
attribute may be used only when calling SAPI_InitToken.

CKA_SAPI_PIN_CURRENT (CK_CHAR_PTR)

This is the current password of the user or SO. This is supplied only if
the token is re initialized after having been initialized in FIPS mode.
This attribute may be used only when calling SAPI_InitToken.

CKA_SAPI_PIN_SO (CK_CHAR_PTR)

This is used only for token initialization and the administrator
password is provided to the token. If no password is supplied, the
token will not have an administrator. This attribute may be used only
when calling SAPI_InitToken.

CKA_SAPI_PIN_USER (CK_CHAR_PTR0

This is used only for token initialization and the user password is
provided to the token. If no password is supplied, the token is
initialized as empty. This attribute may be used only when calling
SAPI_ InitToken.

SAPI Objects | 91

CKA_SAPI_PRODUCT_NAME (CK_CHAR_PTR)

This is a product name like eToken PRO or eToken NG-OTP and
contains the token type encoded as a string.

This is a read only attribute.

See also ETCKA_PRODUCT_NAME in the Token Feature Object
(ETCKH_TOKEN_OBJECT) table on page 51.

CKA_SAPI_PRODUCTION_DATE (CK_DATE)

This is the date on which the token was produced. This attribute may
be zeroed for tokens that do not store the production date. If this
information is not available, the size of the returned attribute will be 0
bytes

This is a read only attribute.

See also ETCKA_PRODUCTION_DATE in the Token Feature Object
(ETCKH_TOKEN_OBJECT) table on page 51.

CKA_SAPI_REAL_COLOR(CK_BBOOL)

This indicates whether the color information returned by the
CKA_SAPI_COLOR attribute is burned onto the token during
production. If this attribute is FALSE, the SafeNet Authentication
Client 8.0 will return "Unknown" (OXFFFFFFFF) as the color value
(earlier versions could return an arbitrary value).

This is a read only attribute.

See also ETCKA_REAL_COLOR in the Token Feature Object
(ETCKH_TOKEN_OBJECT) table on page 51.

CKA_SAPI_RETRY_SO (CK_ULONG)

This is the current number of failed log attempts remaining before the
Security Officer (SO) PIN is locked. It should be noted that when log
in is successful, the counter automatically reverts to the maximum for
future attempts.

This is a read only attribute.

See also ETCKA_RETRY_SO in the Token Feature Object
(ETCKH_TOKEN_OBJECT) table on page 51.

CKA_SAPI_RETRY_SO_MAX (CK_ULONG)

This attribute defines the maximum number of log on attempts a user
can make with incorrect passwords before the SO PIN is locked. When
initializing the token, this attribute applies only if a SO PIN
(CKA_SAPI_SO_PIN) is also supplied.

See also ETCKA_RETRY_SO_MAX in the Token Feature Object
(ETCKH_TOKEN_OBJECT) table on page 51.

CKA_SAPI_RETRY_USER (CK_ULONG)

This is the current number of failed log on attempts remaining before
the user PIN is locked. When the logon is successful, the counter
automatically reverts to the maximum for future attempts.

This is a read only attribute.

See also ETCKA_RETRY_USER in the Token Feature Object
(ETCKH_TOKEN_OBJECT) table on page 51.

CKA_SAPI_RETRY_USER_MAX (CK_ULONG)

This attribute defines the maximum number of log in attempts a user
can make with incorrect passwords before the user PIN has been
locked. When initializing the token, this attribute applies only if a user
PIN (CKA_SAPI_USER_ PIN) is also supplied.

See also ETCKA_RETRY_USER_MAX in the Token Feature Object
(ETCKH_TOKEN_OBJECT) table on page 51.

CKA_SAPI_RSA_KEYS (CK_ULONG)

This attribute is used only in the SAPI_InitToken function to define
the amount of space reserved for RSA keys during token initialization.
It is defined in terms of the number of 1024-bit RSA keys that may be
created. If this parameter is omitted, the default value will be used. If 0
is passed, no place will be allocated for RSA keys.

SAPI Objects | 93

See also ETCKA_RSA_AREA_SIZE in the Token Feature Object
(ETCKH_TOKEN_OBJECT) table on page 51.

CKA_SAPI_RSA 2048 (CK_BBOOL)

When used in the SAPI_GetTokenInfo function, this attribute states
whether the token currently supports RSA 2048 keys or not. When
passed to the SAPI_InitToken function, this attribute defines whether
you need the token to support RSA 2048 keys.

See also ETCKA_RSA_2048 in the Token Feature Object
(ETCKH_TOKEN_OBJECT) table on page 51.

CKA_SAPI_RSA 2048_SUPPORTED (CK_BBOOL)

This attribute states whether the token can be initialized with RSA
2048 key support.

This is a read only attribute.

See also ETCKA_RSA_2048_SUPPORTED in the Token Feature Object
(ETCKH_TOKEN_OBJECT) table on page 51.

CKA_SAPI_SERIAL (CK_CHAR_PTR)

This is a unique token identifier. This field should be used by
applications to refer to the particular token. It is guaranteed to be
unique and compatible with the corresponding field in the
CK_TOKEN_INFO structure in PKCS#11.

This is a read only attribute.

CKA_SAPI_TOKEN_ID (CK_BYTE_PTR)

This is a unique ID for each USB token. The tokens that have no
meaningful token ID (such as smartcards) return an empty byte array
as the token ID.

This is a read only attribute.

See also ETCKA_TOKEN_IDin the Token Feature Object
(ETCKH_TOKEN_OBJECT) table on page 51.

9 |

CKA_SAPI_USER_PIN_INITIALIZED (CK_BBOOL)

This attribute defines the user PIN as being initialized. The default
value for this attribute is TRUE. This attribute may be used only when
calling SAPI_InitToken.

OTP Object

The OTP object represents the OTP secret and corresponding data
(such as counter), stored and operated by the token. Generally
speaking, the token may support multiple OTP algorithms as well as
multiple objects implementing the same OTP algorithm. Only one
OTP object per token is currently supported by SAPI.

Attributes

When the token is initialized, these attributes control how the token
will behave. When the attributes are simply being read, they inform
the application about how the token behaves. These attributes cannot
be changed.

CKA_SAPI_OTP_COUNTER (CK_ULONG)

This determines the current value of the moving factor. If not supplied
to the function SAPI_OTP_Create, 0 will be used as the default value.
This attribute may not be changed by an application after creation.

See also CKA_OTP_COUNTER on page 33.

CKA_SAPI_OTP_CURRENT_ALLOWED (CK_BBOOL)

This attribute defines whether the last OTP value may be received by
using the SAPI_OTP_Execute function. This attribute is TRUE for all
currently supported tokens. SafeNet Authentication Client 8.0 always
returns TRUE for this attribute.

This is a read only attribute.

SAPI Objects | 95

CKA_SAPI_OTP_CUSTOM_DURATION_ALLOWED (CK_BBOOL)

This indicates whether, after the object was created, the duration can
be changed.

See also ETCKA_OTP_MAY_SET_DURATION in PKCS#11
CKO_OTP object on page 48.

CKA_SAPI_OTP_DURATION (CK_ULONG)

This determines for how long (in seconds) the OTP value appears on
the token when the button is pressed.

See also ETCKA_OTP_DURATION in PKCS#11 CKO_OTP object on
page 32.

CKA_SAPI_OTP_MECHANISM (CK_MECHANISM_TYPE)

This identifies the particular OTP mechanism.

CKA_SAPI_OTP_VALUE (CK_BYTE_PTR)

This attribute contains the value of the OTP secret that should be
passed to the SAPI_OTP_Create function. This is a sensitive attribute
in PKCS#11 terms.

The OTP secret value range is different for Java Card & CardOS OTP devices:

Java Card OTP MinKeySize = 20
Java Card OTP MaxKeySize = 24
CardOS OTP MinKeySize = 20
CardOS OTP MaxKeySize = 32

CKA_SAPI_OTP_ZERO_ALLOWED (CK_BBOOL)

This attribute defines whether the OTP computation based on a zero-
counter is allowed. In SafeNet Authentication Client 8.0 it should be
passed as TRUE.

Refer to the SAPI_OTP_Execute function on page 109 for more
information.

9% |

Functions

Note:
In this section the term 'object' means SAPI pseudo-objects, unless
specified differently.

Common Functionality

SAPI_GetLibrarylnfo

This function returns version information about the currently installed
SAPI and underlying SafeNet Authentication Client.

CK RV SAPI GetLibraryInfo (
CK_VERSION PTR pSapiVersion,
CK_VERSION PTR pRteVersion

);

Parameters
pSapiVersion

[out] Pointer to the structure that receives the current SAPI API
version number. SafeNet Authentication Client 8.0 returns 1.2 in this
field.

pRTEVersion

[out] Pointer to the structure that receives the currently installed PKI
Client version number. The SafeNet Authentication Client returns 8.0
in this field.

Functions 97

Slot/Token Functionality

SAPI_GetSlotinfo

This function returns information about a particular slot. The template
may include any attributes defined for the slot object.

CK RV SAPI GetSlotInfo (
CK_SLOT ID slotId,

CK_ATTRIBUTE PTR pTemplate,
CK_ULONG ulCount

);

Parameters

slotld

[in] Slot identifier for which information is requested.
plemplate

[in/out] Pointer to the attributes array that receives the requested
information.

ulCount

[in] Count of attributes in the pTemplate array.

SAPI_GetTokeninfo

This function returns information about a particular token. The
template may contain any attributes defined for the token object.

CK RV SAPI GetTokenInfo (
CK_SLOT ID slotId,

CK_ATTRIBUTE PTR pTemplate,
CK _ULONG ulCount

);

Parameters
slotld
[in] identifier of the slot where the token is located

pTemplate

[in/out] Pointer to the attributes array that receives the requested
information.

ulCount

[in] Count of attributes in the pTemplate array.

SAPI_SetTokenName

This function is used to set the token name without re-initializing it.
Since it is currently the only function that sets a token property and
since this property is available via the C_GetTokenInfo structure, it
does not use the template as a parameter.

CK RV SAPI SetTokenName (
CK SESSION HANDLE hSession,

CK_CHAR PTR label
);

Parameters

hSession

[in] Session handle opened for given token.
label

[in] Zero terminated string of the new token name that will be set.

Remarks

The application should pass proper authentication to use this
function. The token label is subject to size restriction as defined in
CK_TOKEN_INFO structure and in PKCS#11-part of this document.

Functions 99

SAPI_InitToken

This function is used to initialize the token. Token attributes are
passed to customize the initialization. The callback function may be
used to report the status of initialization.

CK_RV SAPI InitToken (
CK_SLOT ID slotId,

CK _ATTRIBUTE PTR pTemplate,
CK _ULONG ulCount,

CK VOID PTR pContext,
CK_INIT CALLBACK p Callback

);

Parameters

slotld

[in] identifier of the slot where the token is located
pTemplate

[in] Pointer to the attributes array that contains the initialization
parameters.

ulCount

[in] Count of attributes in the pTemplate array.

pContext

[in] User provided parameter to be passed to pcallback function.
pCallback

[in] Callback function that lets the application show the progress of
the token initialization process. The callback is optional (NULL may
be passed).

100 |

SAPI _FindTokens

This function returns a list of slots containing tokens that comply with
search criteria. The search criteria may contain any token attributes
except those that may be used only for initialization.

Note:
We do not recommend calling this function with an empty template,
as the behavior may vary between PKI Client versions.

CK_RV SAPI FindTokens (
CK_SLOT ID PTR pSlots,

CK ULONG PTR pSlotCount,
CK _ATTRIBUTE PTR pTemplate,
CK _ULONG ulCount

);

Parameters

pSlots

[out] Pointer to the array that will be filled by found slot identifiers.
pSlotCount

[in/out] Pointer to the variable that:

® Oninput defines the size of the pSlots array
®m On output receives the actual number of found slots

plemplate

[in] Pointer to the attributes array containing the parameters of the
requested tokens.

ulCount

[in] Count of attributes in the pTemplate array.

Functions | 101

SAPI LocateToken

This function finds the slot where a particular token is located.

CK RV SAPI LocateToken (
CK_VOID PTR unique,
CK_ULONG size,
CK_SLOT ID PTR pSlotId

);

Parameters
unique

[in] Pointer to the buffer containing the serial number
(CKA_SAPI_SERIAL) of the token to be located.

size
[in] Size of the unique buffer.
pSlotld

[out] Pointer to the variable that receives the located token's slot
identifier.

SAPI_UnblockPIN

This function is used to unblock the user PIN (using a challenge-
response mechanism). The token should have an Security Officer(SO)
PIN, but the SO should not be logged on.

PKCS#11 has the function C_InitPIN that may be used by the SO to
unblock the user password. However, it requires the application to log
on firstly with the SO password. This approach may not be applicable
for some real-world applications when the token is located on the
user's site because the administrator will not be ready to reveal the SO
password to the user.

102

The function SAPI_UnblockPIN uses a challenge-response mechanism
instead of the password to authenticate the administrator. The
cryptographic challenge is received from the token and passed to the
pCallback function provided by the application. The application has
to compute a response in order to complete authentication to the
token. The SAPI_Server Unblock function may be used for this
purpose. Since this function does not require a token presence it may
be performed on the server site.

CK RV SAPI UnblockPIN (
CK SESSION HANDLE hSession,

CK_CHAR PTR pNewPin,
CK_ULONG ulNewPinLen,
CK_UNBLOCK_ CALLBACK pCallback

);

Parameters

hSession

[in] Session handle opened for the given token.
pNewPin

[in] Pointer to the new user PIN.

pNewPinLen

[in] Size of pNewPin.

pCallback

[in] Callback function that is expected to compute the response for the
given challenge.

SAPI_UnblockPINEx

The function is equivalent to SAPI_UnblockPIN, except that it gets one
more parameter (pContext), which is passed to the callback function.

CK RV SAPI UnblockPIN (
CK_SESSION HANDLE hSession,

CK_CHAR PTR pNewPin,
CK_ULONG ulNewPinLen,
CK_UNBLOCK CALLBACK EX pCallback,
CK VOID PTR pContext

Functions | 103

Parameters

hSession

[in] Session handle opened for the given token.
pNewPin

[in] Pointer to the new user PIN.

pNewPinLen

[in] Size of pNewPin.

pCallback

[in] Callback function that is expected to compute the response for the
given challenge.

pContext
[in] Context that will be passed to the callback function.

SAPI_Login
The function extends C_Login functionality by UI and password
policy management.

CK_RV SAPI Login (
CK_SESSION_ HANDLE hSession,
CK USER TYPE userType,
CK_CHAR PTR pPin,
CK_ULONG ulPinLen,
SAPI PIN POLICY INFO* pPolicyInfo

);

Parameters

hSession

[in] Session handle opened for the given token.
userType

[in] CKU_USER or CKU_SO.

pPin

[in] PIN.

ulPinLen

104 |

[in] PIN length.
pPolicylnfo

[out] Information about password expiration.

Remarks

The function takes in account the password policy settings even
for prior versions.

If NULL is passed as pPin and 0 is passed as ulPinLen, the
SafeNet Authentication Client UI will appear prompting for user
or SO login.

If pPolicyInfo is passed, the function will return valuable
information about password expiration. It returns information
about expiration and warning period and number of days
remained till password expiration. If the password change is
required, the function will fail with the proper error code. If the
password will expire soon, the function will success and will
return the expected (future) error in the warning-field.

pPolicyInfo cannot be used together with SafeNet
Authentication Client Ul

Password policy is applied only to the user PIN.

SAPI_SetPIN

The function extends C_setPIN functionality by UI and password
policy management.

CK RV SAPI SetPIN (

CK_SESSION HANDLE hSession,
CK_CHAR PTR pOldPin,
CK_ULONG ulOldPinLen,
CK_CHAR PTR pNewPin,
CK_ULONG ulNewPinLen

)

Parameters

hSession

[in] Session handle opened for the given token.
pOldPin

Functions | 105

[in] Old PIN.
ulOldPinLen

[in] Old PIN length.
pNewPin

[in] New PIN.
ulNewPinLen

[in] New PIN length.
Remarks:

m If NULL is passed as old and new PIN, the SafeNet
Authentication Client UI will appear prompting for user or SO
password change.

m Password policy is applied only to the user PIN.

OTP Functionality

Theoretically a single token may support multiple OTP algorithms
and keep more than one OTP object. However SAPI makes the
following assumptions:

® Only one OTP object currently exists on the token. Therefore no
special mechanism is proposed to address the particular OTP
object instance on the token.

m The supported OTP algorithms are counter-based (only
CK_SAPI_OTP_HMAC SHA1l DEC6 is supported, which is equivalent
to CRM_HOTP). It is not mentioned explicitly across the API, but is
implied from the set of attributes defined for the OTP object.

m The token is properly initialized in order to operate with OTP.

SAPI_OTPGetMechanismList

This function returns a list of available OTP mechanisms. Depending
on OTP-support on the token, either CK_SAPI_OTP_HMAC_SHAl DEC6
or zero-length list will be returned.

CK_RV SAPI OTP_GetMechanismList (
CK_SLOT_ID slotId,

CK_ULONG_PTR pMechanismList,
CK ULONG_PTR pCount

106 |

);

Parameters

slotld

[in] identifier of the slot where the token is located
pMechanismList

[out] Pointer to the array that will be filled by OTP mechanism
identifiers.

pCount
[in/out] Pointer to the variable that:

® On input defines the size of the pMechanismList array
® On output receives the actual number of found mechanisms

SAPI OTP_GetMechanisminfo

This function returns information about a specific OTP mechanism.

CK_RV SAPI OTP_GetMechanismInfo (
CK_SLOT ID slotId,

CK_ULONG mechanism,
CK_SAPI OTP MECHANISM INFO PTR pMechanismInfo

);

Parameters

slotld

[in] identifier of the slot where the token is located

mechanism

[in] OTP mechanism identifier for which information is requested.
pMechanismInfo

[out] Pointer to the structure that receives the OTP mechanism
information.

Functions | 107

SAPI_OTP_Create

This function creates an OTP object. User login should be performed
prior to this operation.

CK RV SAPI OTP Create (
CK_SESSION HANDLE hSession,

CK _ATTRIBUTE PTR pTemplate,
CK _ULONG ulCount

);

Parameters

hSession

[in] Session handle opened for given token.
pTemplate

[in] Pointer to the attributes array containing the parameters of the
created OTP object.

ulCount

[in] Count of attributes in the pTemplate array.

Remarks

Mandatory attributes to be provided are CKA_SAPI_OTP_MECHANISM
and CKA_SAPI_OTP_VALUE.

If no specific attribute is provided, then zero will be used as the
default value for these attributes.

SAPI OTP_GetAttributeValue

This function returns the characteristics of an existing OTP object. The
key value is sensitive and will not be returned.

CK_RV SAPI OTP_GetAttributeValue (
CK SESSION HANDLE hSession,

CK_ATTRIBUTE PTR pTemplate,
CK_ULONG ulCount
)

108 |

Parameters

hSession

[in] Session handle opened for given token.
plemplate

[in/out] Pointer to the attributes array that receives the requested
information.

ulCount

[in] Count of attributes in the pTemplate array.

SAPI_OTP_SetAttributeValue

This function is used to change the OTP object parameters. Only the
display duration may be changed.

CK_RV SAPI OTP SetAttributeValue (
CK_SESSION HANDLE hSession,

CK_ATTRIBUTE PTR pTemplate,
CK_ULONG ulCount
)

Parameters

hSession

[in] Session handle opened for given token.
pTemplate

[in] Pointer to the attributes array containing the new parameters of
the OTP object.

ulCount

[in] Count of attributes in the pTemplate array.

SAPI_OTP_Destroy

This function deletes an existing OTP object. User login should be
performed prior to this operation.

CK RV SAPI OTP Destroy (
CK_SESSION HANDLE hSession

)

Functions | 109

Parameters
hSession

[in] Session handle opened for given token.

SAPI_OTP_Execute

This function computes an OTP value.

CK_RV SAPI OTP Execute (
CK_SESSION HANDLE hSession,

CK_ULONG mode,

CK_CHAR PTR pResult,

CK_ULONG_PTR pSize
)i

Parameters

hSession

[in] Session handle opened for given token.

mode

[in] Execution mode. (See Remarks)

pResult

[out] Pointer to the buffer which receives the executed value.
pSize

[in/out] Pointer to the variable that:

® On input defines the size of the pResult array
m On output receives the actual length of the pResult array.

Remarks

m Mode CK_OTP_CURRENT returns the last OTP computation without
moving the counter.

110

Mode CK_OTP_RELEASE is kept only for backward compatibility. In
prior versions the application was supposed to call the
SAPI_OTP_Execute function with this mode after getting a new
OTP value in order to release the token for future OTP operations.
This mode is deprecated now and behaves the same as
CK_OTP_CURRENT.

Mode CK_OTP_ZERO performs an OTP computation for the zero-
counter. This mode may be used when the token and the server
are unsynchronized in order to resynchronize them.

SAPI_Server OTP_Calculate

This function calculates the OTP value on the server for a given
mechanism, key and counter.

CK_RV_SAPI Server OTP Calculate (

)

CK ATTRIBUTE PTR pTemplate,
CK_ULONG ulCount,

CK_CHAR PTR pResult,

CK ULONG_PTR pSize

Parameters

pTemplate

[in] Pointer to the attributes array containing the OTP object
parameters.

ulCount

[in] Count of attributes in the pTemplate array.

pResult

[out] Pointer to the buffer which receives the calculated value.

pSize

[in/out] Pointer to the variable that:

On input defines the size of the pResult array
On output receives the actual length of the pResult array.

Functions | 111

Remarks
The template should contain the following attributes:

® CKA MECHANISM
m CKA COUNTER
N CKA_VALUE

SAPI Server Bl _EstimateValue

This function is deprecated.

SAPI_Server_BI_EstimateRetainDays

This function is deprecated.

SAPI_Server_Unblock

This function computes the proper response for the challenge-
response mechanism used during user PIN unblocking.

CK_RV SAPI Server Unblock (
CK_CHAR PTR pPin,
CK_ULONG ulPinLen,

CK VOID PTR pChallenge,
CK VOID PTR pResponse
)7

Parameters

pPin

[in] Pointer to the Security Officer (SO) PIN string.
ulPinLen

[in] Length of SO PIN.

pChallenge

[in] Pointer to the 8 byte length challenge buffer received from the
token.

pResponse

112 |

[out] Pointer to the 8 byte length response buffer provided to unblock
the user PIN.

Major Backward Compatibility Issues of SAPI

m Many SAPI functions are deprecated (especially battery
indication).
Errors returned by the SAPI functions may vary between versions.

Prior to PKI Client 4.0 it was enough to redistribute only
libeTSapi. so to use server-only functionality. Since PKI Client
4.0 it is not true; PKI Client must be installed.

B Some OTP attributes are taken as fixed.

SafelNet.

Chapter 5

Samples

This chapter describes the current SafeNet Authentication Client 32-
bit samples.

m Sample Overview

Compiling the Samples

PKCS#11 Samples

PKCS#11 Token-Specific Extensions Samples
SAPI Samples

114 |

Sample Overview

This chapter provides a description of the samples. The samples
themselves are available on the token website. For details contact
Support (See Support on page iii)

All samples are in C/C++.

The samples cover different programming techniques to show the
multiple options available. Different samples may achieve similar
results, but through different methodologies.

The samples are not always fully functional applications. Certain
details, such as error handling, may be omitted for the sake of brevity.

The following samples are described in this chapter:

API Sample
PKCS#11 m Info Test

m InitToken

m Password Policy

m CACert
PKCS#11 Token Specific | ®m Initiating
Extensions m UnlockToken
SAPI m nitOTP

m InitToken

m TokenInfo

Compiling the Samples

You can compile the samples in one of the following ways:

m Use SlickEdit: open the relevant sample’s SlickEdit project (vpw).

m Run Makefile: go to the relevant sample and run the make
command.

PKCS#11 Samples | 115

PKCS#11 Samples

Read the following introductory remarks before starting to work with
these samples:

CACert

We recommend loading the library dynamically.

Do not use hard-coded function names. According to the
standard, you should call the function C_GetFunctionList to
reach the addresses of other functions. This is the only function
name that is guaranteed to you.

In many cryptographic applications you have to deal with X.509
certificates. The X.509 certificate has a complicated data structure
encoded in a special way (DER-encoding of ASN.1). There is no
simple way for applications to deal with this data structure.
SafeNet Authentication Client does not provide special helper
functions for this purpose. However, you may use Microsoft
helper functions described in MSDN. They are used widely in the
samples.

This sample demonstrates how to import a CA certificate into a token.

The sample performs the following actions:

Reads the CER file.

Extracts the subject of the CER file.

Searches for the first connected token.

Opens a session and performs login to the token.
Imports the CA certificate into the token.

116 |

ClearToken

This sample gets the token password and a certificate label. It then
runs over all the token’s objects deleting them, excluding the object
with the given label.

Info Test

This sample prints general information about the PKCS#11 library and
waits for any slot events (token insertion or removal). Upon token
insertion, it prints information about the token and its certificates.

The sample continues this operation in an endless loop. It can be
stopped by ending the process. No parameters are passed to this
sample.

This sample demonstrates the following techniques:

Dynamic loading and initialization of the PKCS#11 library (all
other samples follow the same technique) and reaching addresses
of functions via C_GetFunctionList.

Obtaining information about the library, slots and tokens via
funcﬁonsC_Info, C_GetSlotInfo, C_GetTokenInfo.

Obtaining the supported RSA key size with the function
C_GetMechanismInfo.

Finding objects that satisfy a particular pattern (set of attributes);
the sample shows how to find a X.509 certificate object.

Retrieving object attributes.

Using Microsoft helper functions to extract information from the
certificate.

PKCS#11 Samples | 117

InitToken

The initialization of token is complicated by the fact that some
important issues, such as the need for authentication, are purposely
kept out of the scope of the PKCS#11 standard. This sample
demonstrates how to initialize the token using PKCS#11. The function
that is used in this sample for initialization is C_InitToken (and not
one of PKI Client’s extended functions for initialization).

This sample also demonstrates how to generate an RSA key pair on
the token.

The sample has the following command line parameters:

m Reader name.
m Token formatting password:

¢ For a non-initialized token — use the SO password that is set
after initialization (see Behavior of Standard C_InitToken and
C_InitPIN Functions on page 42).

¢ For a token initialized with an administrator password, use
the administrator password.

¢ For a token initialized without an administrator password,
use the current user password.

m User password to be set after initialization.
This sample demonstrates that a flow does not require a UI for any

kind of token (not initialized, initialized with or without administrator
password).

The suggested flow is:

1. Map the reader name to the slot ID.

2. Open the session with the token. SafeNet Authentication Client
will allow the session to open even with a non-initialized token.

3. Login as the SO with the token formatting password.
4. Close the session.

You should close the session since it cannot perform C_InitToken
if at least one session with the token is open. Your token will be
logged out, but SafeNet Authentication Client will keep the
password for a period, preventing login UI (for the next step).

5. Perform C_InitEToken.

The same formatting password is passed as the parameter.

118

Open a new session.
Login as SO with the formatting password.
Perform C_InitPin to initialize the user password.

o 0N

Perform C_Logout. Your token is initialized now.

To demonstrate successful token initialization, the sample then
logs in as the user and generates an RSA key pair.

Note:

Treatment of the C_InitToken parameter varies between versions
of PKCS#11. Later versions (v2.11, v2.20) define it as:

m For an empty token: New SO password

m For already initialized token: Current SO password

Such a definition is much more useful. When future versions of the
SafeNet Authentication Client support later versions of PKCS#11, this
approach will be applied.

Password Policy

This sample demonstrates how to manipulate the token password
policy object. After the token is initialized we change the current
password policy object.

This sample demonstrates the use of the following functions, to find
the PIN policy object:

B C_FindObjectsInit
B C_FindObjects
B C_FindObjectsFinal

The sample then uses the following to update the current PIN Policy
Object:

B C_SetAttributeValue

PKCS#11 Token-Specific Extensions Samples | 119

The sample then demonstrates a the use of some token functions that
verify the new updated settings.

PKCS#11 Token-Specific Extensions Samples

Initiating

This sample demonstrates how to initialize the token using PKCS#11
token-specific extensions.

The sample loads the PKCS# 11 and the PKCS11 Token-Specific
extensions function lists and then gets information from the token to
decide if the token supports the 2048 key size. The initialization
process then begins.

The sample also demonstrates the initialization of the Pin Policy
Object.

The sample uses the following functions:

ETC_InitTokenInit - create the session (start the transaction)

ETC_InitPIN - same as C_InitPin but with the addition of two
new variables:

¢ User retry counter
¢ Flag to change the password

B ETC_InitTokenFinal - end the transaction and physically
initialize the token

UnlockToken

Takes a token and unlocks it using PCKS#11 Extensions functions. The
sample shows the use of the Challenge-Response process.

Note:
This sample is supported in PKI Client 4.55 or later.

120

The sample performs the following

Opens session with the token.
Prints the pointers of the PCKS#11 Extended functions.
Checks ETC_ UnlockGetChallenge.

Calls PCKs#11 standard functions and prints the user retry
counter from the token.

m Performs unlocking of the token:
¢ PCKS#11 Extensions ETC_ UnlockGetChallenge
¢ SAPI sAPI_Server_ Unblock
¢ PCKS#11 Extensions ETC_UnlockComplete

SAPI Samples

InitOTP

This sample demonstrates the OTP functionally of the token using
SAPI. This sample demonstrates the OTP functionality of the token. It
is assumed that token has OTP capabilities and that the token
firmware supports the OTP calculation in the online mode (that is,
when the token connected). This information is received from the
SAPI_OTP_GetMechanismInfo function.

The sample performs the following:

Opens the session with the token
Logs in the user (it is necessary to create an OTP object)
Destroys old OTP objects (if any)

Creates a new OTP object (In a real application, the same key
should be stored on the server as well)

®m Demonstrates an online OTP calculation (it is rarely used in real
applications)

m Demonstrates a server-side calculation

SAPI Samples | 121

InitToken

This sample demonstrates how to initialize a token using SAPI.

TokenlInfo

This sample demonstrates how to use SAPI to obtain more detailed
information about a particular token.

122

A

API_Server_BI_EstimateRetainDays 111

B

Backward Compatibility Issues 43
Backward Compatibility of
C_InitToken/C_InitPIN 43

C

C_CopyObject 19

C_DeriveKey 20

C_Finalize 14
C_GenerateKeyPair 20
C_GetAttributeValue 19
C_GetInfo 14

C_GetObjectSize 19
C_GetSlotInfo 15

C_GetSlotList 15
C_GetTokenInfo 16

C_Initialize 13

C_InitToken 18

C_Login 19

C_SeedRandom 20

C_SetPIN 18
C_WaitForSlotEvent 18

CA Certificates 46

CACert 115

CAPI Support 46

Choosing the Correct API 2
CK_INIT_CALLBACK 79
CK_SAPI_OTP_MECHANISM_INFO 81
CK_UNBLOCK_CALLBACK 80
CK_UNBLOCK_CALLBACK_EX 80

SafelNet

Index

CKA_SAPI_CARD_ID (CK_BYTE_PTR)
86

CKA_SAPI_CARD_TYPE (CK_ULONG)
86

CKA_SAPI_CARD_VERSION
(CK_VERSION) 87

CKA_SAPI_CASE_MODEL
(CK_ULONG) 87

CKA_SAPI_COLOR (CK_ULONG) 87

CKA_SAPI_FIPS (CK_BBOOL) 87

CKA_SAPI_FIPS_SUPPORTED
(CK_BBOOL) 88

CKA_SAPI_HAS_LCD (CK_BBOOL) 88

CKA_SAPI_HAS_SO (CK_BBOOL) 88

CKA_SAPI_HAS_USER (CK_BBOOL) 88

CKA_SAPI_HMAC_SHA1 (CK_BBOOL)
89

CKA_SAPI_HMAC_SHA1 SUPPORTED
(CK_BBOOL) 89

CKA_SAPI_INIT_PIN_REQCK_BBOOL)
89

CKA_SAPI_MAY_INIT (CK_BBOOL) 89

CKA_SAPI_MODEL (CK_CHAR_PTR0)
89

CKA_SAPI_NEW_KEY (CK_BYTE_PTR)
90

CKA_SAPI_OLD_KEY (CK_BYTE_PTR)
90

CKA_SAPI_OTP_COUNTER (
CK_ULONG) 94

CKA_SAPI OTP_CUSTOM_DURATION
_ALLOWED (CK_BBOOL) 95

CKA_SAPI_OTP_DURATION (
CK_ULONG) 95

CKA_SAPI_OTP_MECHANISM (
CK_MECHANISM_TYPE) 95

124

CKA_SAPI_OTP_VALUE (
CK_BYTE_PTR) 95

CKA_SAPI_OTP_ZERO_ALLOWED
(CK_BBOOL) 95

CKA_SAPI_PIN_CURRENT (
CK_CHAR_PTR) 90

CKA_SAPI_PIN_SO (CK_CHAR_PTR)
90

CKA_SAPI_PIN_USER (
CK_CHAR_PTRO 90

CKA_SAPI_PRODUCT_NAME (
CK_CHAR_PTR) 91

CKA_SAPI_PRODUCTION_DATE (
CK_DATE) 91

CKA_SAPI_REAL_COLOR
(CK_BBOOL) 91

CKA_SAPI_RETRY_SO (CK_ULONG)
91

CKA_SAPI_RETRY_USER
(CK_ULONG) 92

CKA_SAPI_RETRY_USER_MAX (
CK_ULONG) 92

CKA_SAPI_RSA_2048 (CK_BBOOL) 93

CKA_SAPI_RSA_2048_SUPPORTED (
CK_BBOOL) 93

CKA_SAPI_RSA_KEYS (CK_ULONG)
92

CKA_SAPI_SERIAL (CK_CHAR_PTR)
93

CKA_SAPI_SLOT_NAME
(CK_UTF8CHAR_PTR) 85

CKA_SAPI_SLOT_TYPE (CK_ULONG)
85

CKA_SAPI_TOKEN_ID (
CK_BYTE_PTR) 93

CKA_SAPI_USER_PIN_INITIALIZED (
CK_BBOOL) 94

Common Description of SAPI 76

Compiling the Samples 114

Configuring Secondary Authentication
for the Token 35

Constants 47

Controlling initialization parameters 38

Creation of Password Policy Object 40
Creation of the Protected RSA Key 34
Creation Token Object 39
Cryptography Information Sources 5

D

Data Types 49

E

Error Codes 82
ETC_BeginTransaction 65
ETC_CreateVirtualSession 67
ETC_DestroyTracker 65
ETC_EndTransaction 66
ETC_GetProperty 66
ETC_InitPIN 69
ETC_InitTokenFinal 69
ETC_InitTokenInit 68
ETC_SetProperty 67
ETC_SingleLogonGetPin 68
ETC_UnlockComplete 70
ETC_UnlockGetChallenge 69
ETCKM_PBA_LEGACY 70
Extensions Related to Operations with
Slots and Tokens 27

Info Test 116
Initiating 119
InitToken 117, 121

K

KA_SAPI OTP_CURRENT_ALLOWED
(CK_BBOOL) 94

KA_SAPI_ RETRY_SO_MAX
(CK_ULONG) 92

125

Major backward compatibility issues of
PKCS#11 21

Major backward compatibility issues of
SAPI 112

Miscellaneous Functionality 78

Multi-Language Support 6

N

Notification 118
Notifications 28
Null-termination of strings 25

0]

Objects 50

One-Factor Authentication 44
OTP 31

OTP Functionality 77, 105
OTP Object 94

P

Password management 6

Password Policy 29, 118

Password Policy Management 6

PIN Initialization 42

PKCS#11 Functions 13

PKCS#11 Samples 115

PKCS#11 Token-Specific Extensions
Samples 119

Private Data Caching 47

Proprietary initialization functions 36

S

SafeNet eToken Virtual 27
Sample Overview 114
SAPI Objects 85
SAPI_FindTokens 100
SAPI_GetLibraryInfo 96

SAPI_GetSlotInfo 97
SAPI_GetTokenInfo 97
SAPI_InitToken 99
SAPI_LocateToken 101
SAPI_Login 103
SAPI_OTP_Create 107
SAPI_OTP_Destroy 108
SAPI_OTP_Execute 109
SAPI_OTP_GetAttributeValue 107
SAPI_OTP_GetMechanismInfo 106
SAPI_OTP_SetAttributeValue 108
SAPI_OTPGetMechanismList 105
SAPI_PIN_POLICY_INFO 81
SAPI_Server_ BI_EstimateValue 111
SAPI_Server_OTP_Calculate 110
SAPI_Server_Unblock 111
SAPI_SetPIN 104
SAPI_SetTokenName 98
SAPI_UnblockPIN 101
SAPI_UnblockPINEx 102
Secondary authentication 33
Single Logon Mode 44
Slot Object 85
Slot/Token Functionality 97
Slot/Token IOCTL 27
Special Authentication Features 44
Standard C_InitToken and C_InitPIN
Functions 42
Supplying Special PIN to the RSA Private
Key Operation 34
Supported eToken Models 7

T

The Initialization Flow 36

Token initialization 35

Token Initialization Keys 40

Token Object 86

Token-less Operations 29

Tokens Initialized by Earleir PKI Client 43
Token-specific PKCS#11 Extensions 23
Token-specific PKCS#11 extensions 24
Transactions 28

126 |

U

Understanding secondary authentication
33

UNICODE Support 25

UnlockToken 119

User PIN unlocking 45

Using Tokens Initialized by PKI Client
4.0, 4.5 or 5.0 in Earlier Versions
43

\

Vendor-specific OTP Key Attributes 33

W

Why Extensions are Needed for
Initialization 35
Writing Wrapper Objects 4

	SafeNet Authentication Client (Linux)
	Chapter 1 Overview
	SafeNet Authentication Client 8.0
	Choosing the Correct API
	PKCS#11
	SAPI

	Obsolete APIs
	Developing in Non-C/C++ Environments
	A Note on Cryptography
	Additional Cryptography Information Sources

	Password Management
	Multi-Language Support
	Password Policy Management

	Supported Token Models

	Chapter 2 PKCS#11 and Configuration
	PKCS#11 Implementation for SafeNet Authentication Client 8.0
	Using libeTPkcs11

	Supported Object types
	Supported Mechanisms
	PKCS#11 Functions
	C_Initialize
	C_Finalize
	C_GetInfo
	C_GetSlotList
	C_GetSlotInfo
	C_GetTokenInfo
	C_WaitForSlotEvent

	C_InitToken
	C_SetPIN
	C_Login
	C_CopyObject
	C_GetObjectSize
	C_GetAttributeValue
	C_GenerateKeyPair
	C_DeriveKey
	C_SeedRandom
	C_CreateObject

	Major Backward Compatibility Issues of PKCS#11

	Chapter 3 Token-Specific PKCS#11 Extensions
	General Overview
	Understanding Token-Specific PKCS#11 Extensions
	Encoding of Text Attributes, Fields and Parameters
	SafeNet Authentication Client
	Slot/Token IOCTL
	Extensions Related to Operations with Slots and Tokens
	Special Token Capabilities

	Vendor-Specific Information
	Vendor-Specific OTP Key Attributes
	Secondary authentication
	Token initialization
	Controlling Initialization Parameters
	PIN Initialization
	Behavior of Standard C_InitToken and C_InitPIN Functions
	Backward Compatibility Issues
	Special Authentication Features
	Miscellaneous Features

	Reference
	Common Information
	Constants
	Data Types
	Objects
	Challenge-Response Unlocking Capability Feature Object
	Private Data Caching Feature Object
	Secondary Authentication Policy Feature Object
	Functions
	Mechanisms
	Properties

	Token Model Specifications

	Chapter 4 SAPI
	Introduction
	Common Description of SAPI
	OTP Functionality
	Miscellaneous Functionality

	Data Types
	CK_INIT_CALLBACK
	CK_UNBLOCK_CALLBACK
	CK_UNBLOCK_CALLBACK_EX
	SAPI_PIN_POLICY_INFO
	CK_SAPI_OTP_MECHANISM_INFO

	Error Codes
	SAPI Objects
	Slot Object
	Token Object
	OTP Object

	Functions
	Common Functionality
	Slot/Token Functionality
	OTP Functionality

	Major Backward Compatibility Issues of SAPI

	Chapter 5 Samples
	Sample Overview
	Compiling the Samples
	PKCS#11 Samples
	CACert
	ClearToken
	Info Test
	InitToken
	Password Policy

	PKCS#11 Token-Specific Extensions Samples
	Initiating
	UnlockToken

	SAPI Samples
	InitOTP
	InitToken
	TokenInfo

	Index

